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Quantum Phase Transitions in Disordered Two-Dimensional Superconductors
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It is argued that with increasing applied magnetic field, a disordered, superconducting thin film will

undergo a zero-temperature transition into an insulating state. At this superconductor-insulator transi-
tion the field-induced vortices Bose condense. A scaling theory for this field-tuned transition is de-
scribed. Right at the transition, both the longitudinal and Hall resistivities are predicted to be finite,
nonzero, and have universal values.

PACS numbers: 74.40.+k, 74.70.Mq

An applied magnetic field drastically alters the low-

temperature behavior of disordered two-dimensional
electron systems. Weak localization' is replaced by the
integer and fractional quantum Hall effects. Recent at-
tention has focused on analogous bosonic systems —dis-
ordered superconducting films —which exhibit a dis-
order-tuned (T 0) superconductor-insulator transi-
tion. What effect will an applied magnetic field have

on this latter system? In this paper we present argu-
ments that a new and fundamentally different
superconductor-insulator transition should be accessible
by simply tuning the magnetic field. Rather than an un-

binding of vortex pairs, this field-tuned transition is
driven by the delocalization and Bose condensation of
field-induced vortices. A scaling theory is developed for
the resistivity near and at the transition. Both resistivi-
ties p„„andp„~are predicted to be universal at the tran-
sition with their squares summing to approximately
(h/4e ) . Experimental results on this new field-tuned
transition in amorphous a-InO„ films are reported in a
companion paper.

Consider first a disorder-free superconducting film in

zero external field. Such a film will undergo a Koster-
litz-Thouless (KT) superconducting transition at some
temperature T„which, due to enhanced fluctuations in

2D, is typically substantially below the bulk transition
temperature T„.Below T,, but above T„the Cooper-
pair order parameter y(r) obtains an appreciable magni-
tude, but phase fluctuations due to vortex motion prevent
(quasi-) long-range order from being established. At T„
vortices and antivortices bind into pairs, and power-law
order is established, (y*(r)y(0)) -r

As the disorder 6 is increased, both T, and T„will
typically be suppressed. Much effort has focused on this
initial suppression for weak disorder. In contrast, we
focus on "strong" disorder, near 5, in Fig. 1, where T, is
driven all the way to zero. The point labeled 3,, in the
figure is a T=0 superconductor-insulator transition,
which can be accessed by varying the disorder strength
(or film thickness ). Provided T„doesnot also vanish at
h,

„
the long-length-scale physics near h, can be de-

scribed in terms of vortex unbinding, just as it can at the
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FIG. 1. Schematic phase diagram for disordered supercon-
ducting films. Distinct T 0 superconductor-insulator transi-
tions occur at both critical disorder & and critical magnetic
field B,.

KT transition: Vortices, paired when superconducting,
unbind in the electron-glass insulator. Since one is at
T 0, though, the vortices must be treated quantum
mechanically. As detailed below, vortices are, in fact,
themselves bosonic particles. The electron-glass phase,
in which the electron pairs are localized, can then be de-
scribed, near the transition, as a Bose-condensed fluid of
unbound vortices.

Consider now the effects of an applied magnetic field.
In a pure system the vortices will freeze into an Abriko-
sov vortex lattice below a melting line 8 . In real sys-
tems with disorder, though, (quasi-) long-range crystal-
line correlations will be destroyed. In 2D, at finite tem-
perature, vortex creep will then destroy phase coherence
and lead to a resistance. What happens as T 0? A
classical description of vortex dynamics would predict
complete pinning by disorder at T 0, and hence zero
resistance. This T 0 superconducting phase will exhibit
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Hp= i g V;~(n; —np)(nJ —np)+gU;n;,
tJ I

H~ = —tgcos(p; —
p, +A;~"') .

&ij)

(2a)

(2b)

This is a "phase-only" model wherein the Bose (Cooper
pair) field y e'~, with a phase p conjugate to the boson
number: [p;,nJ ] =ib;, . Here V J

—(2e ) /r ~ represents
the Coulomb interaction, U; is an on-site random poten-
tial with mean zero and variance 5, and B=VXA'"' is
the external field. The particle density is set by a
positive-charge background no, taken to be much less
than 1. Since the 2D screening length, kqD=X /d with
d the film thickness, is typically very large, it is appropri-
ate to work in the limit X2D=~ with no fluctuating
gauge field as in (2).

Since the superconductor-insulator transitions at h,,
and 8, are (T=O) quantum analogs of the vortex-
unbinding Kosterlitz-Thouless transition, a formal de-
scription in terms of vortices in the quantum regime is
clearly desirable (although not essential for the scaling
theory below). Fortunately, the vortex degrees of free-
dom implicit in the quantum Hamiltonian (2) can be

spin-glass-type order in the pair field y,

& ~(y*(r)y(0)) ~
'),„&0,

as r ~, where the (),„denotes an ensemble average,
and is thus called a vortex glass. But what about quan-
tum fluctuations of the vortices? At T=O vortices can
be localized by a combination of disorder and logarith-
mic repulsive interactions: Once localized they are im-
mobile and do not creep. The 2D vortex glass can thus
survive quantum fluctuations.

As the field is increased (at T =0) a remarkable possi-
bility arises. With increasing density, the vortices should
delocalize and undergo a (Bose) condensation at some
critical field 8,. This condensation requires that the
electron pairs be localized —in a Cooper-pair glass
phase —just as Cooper-pair condensation in the vortex
glass requires localized vortices Near . the transition
there is a direct competition between condensation of
Cooper pairs and vortices. This previously unstudied
field-tuned superconductor-insulator transition is the
focus of this paper.

Almost all of the physics below T„and H„in the
phase diagram should be correctly described by a model
of charge-2e bosons, representing the Cooper pairs, mov-

ing in a random potential. The continuous transitions,
at T„h,„B„and8, will be described correctly, as will
the two superconducting phases, the vortex glass and the
conventional 8=0 phase. Although charge-transport
properties of the electron glass (e.g. , temperature depen-
dence) should be described correctly by the localized
Bose-glass phase of a charged-boson model, the spin
properties may not be. Keeping this in mind, consider
the following boson Hamiltonian on a 2D square lattice:
H =Hp+H~, with (h =2e =1),

made explicit by a mapping to a dual representation with
dual Hamiltonian 0' =00+0] +02, with

Hp =
2 QG~)(N; 8—)(N) 8)—,

IJ

H
~

= —t 'g c os ( 8;
—8, —a;J ),

(.Ij )

Hi =Hp[n V x a] +g ~II, ~

'.

(3a)

(3b)

(3c)

~ey

Pap &ap ~ (4)

with a,P x,y. Since a vortex current causes 2n phase
slips in p, and hence a voltage V=(h/2e)p, (4) is
perhaps not surprising. Equation (4) will come in handy
later.

Consider first 8=T=O. As the disorder h, is in-
creased, the Hamiltonian (2) should exhibit a transition
from a superconducting to Bose-glass insulating phase,
which is in the same universality class as the super-
conductor-electron-glass transition (5, in Fig. 1). Here
we briefly recap and extend a scaling theory for this
transition, presented previously, before discussing the
field-tuned vortex-glass to insulator transition.

Provided the transition at h„is continuous, there will
be a diverging length g- ~h

—A, ~

", which sets the scale
of Auctuations about (y) AO in the superconducting

Here N; is a vortex number operator, conjugate to the
phase 8 of the vortex field e': The vortices are thus bo-
sons. The votex interaction varies log arith mically,
G;~- —ln(r;J), and the number of vortices is set by the
applied field. In practice the vortex (core) size will be
set roughly by T„(viahvF/k&T, , with vF the Fermi ve-

locity) which remains finite at the T=O transitions of in-
terest (see Fig. 1).

When the vortices move, they see a (fictitious) fiuc-
tuating gauge field a in (3b) whose curl is the original
boson density. The origin of this gauge field can be un-
derstood heuristically as follows: When a Cooper pair
hops around a vortex, or similarly when a vortex is taken
around a pair, the pair wave function picks up a phase
2z. In the (dual) vortex representation this phase
change must be taken up by the vortex wave function.
The gauge-field coupling in (3b) assures that this hap-
pens: Since V&a equals the Cooper-pair (boson) densi-
ty, the Aharonov-Bohm phase factor due to the vortex
hopping is precisely 2' for each pair encircled. The
sound (or plasmon) mode of the original bosons is de-
scribed by (3c) in the dual representation, where II is a
momentum conjugate to a and the Coulomb gauge
V a =0 is assumed. Note the striking similarity between
the original and dual representation.

Under the duality transformation, which takes one
from particles to vortices, resistivities and conductivities
get exchanged. Specifically, one can show formally6'p
that the dimensionless particle resistivity tensor p, ii
=(4e /It)p, p equals the (dimensionless) vortice conduc
tivity tensor cr,"p..
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phase and (y (r)y(0))-e 'i~ in the insulating phase,
with exponent v) 2/d=1. A vanishing characteristic
frequency Q-( ' is also expected. It was argued in
Ref. 5 that the dynamical exponent z is exactly 1, due to
the long-ranged Coulomb interaction; i.e., h Q —V (r
=g). Near the transition, physical properties should
scale with the appropriate powers of g and Q. Consider
the current-voltage characteristics. In the presence of a
2D current density J, a vortex picks up energy (h/2e) JL
from the Lorentz (Magnus) force when it moves a dis-
tance L Th.us J should enter scaling functions in the di-
mensionless combination Jg/2e Q, or with g ( ' for
d&2. Likewise, since a Cooper pair picks up an energy
2eEL when it moves a distance L in an electric field E,
the dimensionless scaling combination is 2eE(/h Q.
Thus, near the transition the I-V curves should satisfy a
(T=O) scaling form

E = (h/2e) g
' QE ~ (Jg '/2e Q ) . (5)

For nonzero currents the electric field must be nonzero.
Thus as g ~, the scaling functions E ~ (X) must have
a power-law behavior at large X to cancel the (vanish-
ing) prefactors in (5). This implies that right at the
transition, E—J~'+' '+' . In the 2D case of interest
the linear resistivity (or resistance per square) is finite at
the (T 0) transition so that the system is "metallic. "
The Cooper pairs diffuse, something not possible for un-
paired electrons' in 2D. As argued in Ref. 5, this metal-
lic resistance should be universal, independent of all mi-
croscopic details.

The form of the scaling functions Ei(X) and E —(X)
for X 0 are determined by the I-V characteristics in
the electron-glass and superconducting phases, respec-
tively. From Mott variable-range hopping of (charged)
electron pairs one expects that" J/E-exp[ —(T0/
T) 'i ]-exp[ —(Eo/E)'i ], so that Ei(X)—iln(X)i
for X 0. In the (8=0) superconducting phase an ap-
plied current generates an electric field by nucleation of
vortex-antivortex pairs. At finite temperature this
proceeds by thermal activation leading to a power law
I-V, but at T=O must proceed by quantum tunneling.
At given current density J, tunneling into a state with a
vortex and antivortex separated by distance r becomes
possible when the Lorentz energy (h/2e)Jr becomes
comparable to the vortex-antivortex attractive interac-
tion energy, which varies as ln(r). Since E will vary
with the rate of tunneling, -e ~, this implies
E —(X)— i' ii for X 0.

Near the zero-field transition, h,, in Fig. 1, tempera-
tures should scale with Q and magnetic fields with &0/g .
Thus the KT transition temperature should vanish as
T, -(A, —6)'", whereas the vortex- to electron-glass
phase boundary should vary as 8, —(5, —6) ". Togeth-
er these imply that near h,

„

providing a direct way to measure z, and check the pre-
diction z =1.

Consider now the field-tuned superconductor-insulator
transition from the vortex- to electron-glass phase. Most
of the scaling results described above and in Ref. 5 for
the transition at h,, apply equally well at this transition.
Once again, near the transition one expects a diverging
length gg-(8 —8, ) ', which sets the scale for correla-
tions of the function in (1), with vii) 2/d=l, and a
vanishing characteristic frequency Qii -gii ' . Here
subscripts denote the field-tuned transition. The scaling
argument in Ref. 5 implies zq =1. The T=O I-V
characteristics near the transition should satisfy a scaling
form as in (5), but with g and Q replaced by gg and Qii,
respectively. This implies that right at the transition,
8 =8, and T=O, there should, once again, be a metallic
(i.e., finite) linear resistivity. As at the zero-field transi-
tion, this resistivity is expected to be universal, al-
though presumably with different values for the two
transitions. The scaling functions E~(X) for the vor-
tex-glass to insulator transition should have the same
functional forms for small and large X as the 8=0 tran-
sition.

Because of the applied field, a Hall resistivity p„~ is
also expected at the B&0 vortex- to electron-glass transi-
tion. Like p„,p„~should have a universal value at the
transition. Close to this transition (i.e., 8 8, and
T 0) T should be scaled by Qa. Thus both resistivi-
ties should satisfy scaling forms,

p.p(8, T) = (h/4e') p,p[co(8 8, )/T ' '], — (7)

with co a nonuniversal constant. Here P,p[Y] are (ana-
lytic) dimensionless scaling functions, which are finite
and nonzero at Y=c(8 8, )/T " '=0—. The behavior
of p[Y] for large positive and negative arguments is
determined by the transport properties of the electron-
and vortex-glass phases, respectively. In the electron
glass, variable-range hopping of (charged) electron pairs
implies'' P,p-exp(Y""' ) for Y ~. In the vortex-
glass phase, vortex motion at TAO leads to a nonzero
resistivity. At low temperatures motion will proceed by
thermally assisted quantum tunneling, leading to a Mott
variable-range (vortex) hopping resistivity Because of.

the logarithmic interaction between vortices which pro-
duces a real "Coulomb" gap, though, one expects an
Arrhenius form with possible logarithmic corrections,
p(T) -e ' ", so that p,p-exp(Y"" lni Yi) for
p~ —oo

It should be emphasized that at 8=8, the resistivities
p,*p—= (h/4e )p,p[Y 0] are only universal when T:0. —
The leading finite-temperature corrections should be
quadratic and scaled by T,: p,p(B„T)=p,*lj+O(T/
T, )'.

Is it possible to estimate the universal resistivities at
the vortex- to electron-glass transition? As the magnetic
field is increased one expects the model Hamiltonian (2)
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to undergo a transition from a vortex-glass phase, with

long-range order as in (1), to a localized boson phase,
called a Bose glass: This transition should be in the
same universality class as the vortex- to electron-glass
transition in real systems. In the dual representation
(3), the localized Bose-glass phase is the ordered phase,
since the vortices (dual particles) have (Bose) con-
densed. Because the vortices see an effective (fictitious)
magnetic field in (3), vortex condensation is only possible
at T 0 where it will induce spin-glass-type order, as in

(1), but with the Copper-pair field yr replaced by the vor-
tex field e' and made suitably gauge invariant.

It is clear that near the vortex- to electron- (or Bose)
glass transition, the Cooper pairs and vortices are play-
ing a dual role. In the vortex-glass phase the Cooper
pairs have condensed and the vortices are localized,
whereas in the insulating phase the vortices are con-
densed and the Cooper pairs localized. At the transition,
neither vortices nor pairs have condensed: Both are me-
tallic and diffuse with a finite resistance. Indeed, for a
model of logarithmically interacting bosons (Cooper
pairs) the transition is in fact self-dual: ' With V;,——in(r;, ), the first term in (2a) has the same form as
(3a) and, moreover, the fluctuations of the fictitious vec-
tor potential, Ba, about its mean value (Vxa=np) pick
up a mass term (Ba) in (3c). Expressing the partition
functions for (2) and (3) as path integrals, the fluctua-
tions in ba (and other noncritical high-k modes) can
then be integrated out without changing the long-
length-scale properties near the transition. The efl'ective

coarse-grained theories thereby obtained will have
equivalent forms for the original and dual models:
Universality then implies self-duality at the transition.
In this case the resistivity scaling functions in (7),
p(Y)=p,~(Y), can be equated directly with the adjoint
of their dual vortex counterparts, the vortex resistivity
scaling functions: p,p(Y) pt't, ( —Y). [The adjoints are
related since the fictitious field seen by the vortices in

(3b) is of opposite sign to the physical field in (2b).]
Upon combining this with (4), one deduces that the
universal resistivities at the transition satisfy

( 4 )2+( 4 )2~g2 (8)

with Rg h/4e 2 the quantum resistance. More general-
ly, the scaling functions satisfy p(Y)p ( —Y) 1, which
can be solved to give p( —Y) =P(Y)/detp(Y).

Equation (8) says, in effect, that right at the transi-
tion, for every Cooper pair crossing the system there is

also precisely one vortex crossing the system. In a trans-
port situation, the angle e between the particle and vor-
tex currents is the Hall angle, p„*„=tan(8)p„*».This an-

gle can, in principle, be estimated by exploiting a close

similarity between this transition, for logarithmically in-

teracting bosons, and the transition between plateaus in
the integer quantum Hall effect (IQHE). Recent work'
suggests that these two transitions might be in the same
universality class and shows that 8=2arctan(2hcr„*,/
e ), where cr„*„is the conductivity as T 0 right at the
IQHE transition. Provided the universality class is the
same, a calculation or measurement of o,*„enables an es-
timate of 8. Numerical calculations for the IQHE
give' cr„„(0.45-0.55)e /h, which implies a small Hall
effect at the superconductor-insulator transition (p„~
«p„„),whereas IQHE experiments appear to find'a„„(02~0.1) e2/h, which would suggest a more siz-
able Hall effect at the superconducting transition.

Since Cooper pairs do not interact logarithmically, but
as I/r, Eq. (8) (and estimates for the Hall angle) should
not be taken too seriously in comparison with real sys-
tems. I suspect, though, that a more appropriate model,
with I/r interactions, might well give values not substan-
tially different. In any event the above estimates should
serve as a useful guide for experiment.
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