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Intrinsic Pinning and Lock-In Transition of Flux Lines in Layered Type-II Superconductors
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Reversible flux penetration in uniaxial layered superconductors is studied, taking into account the pos-
sible trapping of vortex cores between layers. This is found to induce high intrinsic critical currents
parallel to the layers. In low and intermediate fields, the flux lines experience a lock-in transition to-
wards the layer plane, as a function of the field direction or intensity. Applications to anisotropic high-

T, materials is discussed.

PACS numbers: 74.60.Ge, 74.60.Jg, 74.70.Jm

High-T, cuprate superconductors, made of weakly
coupled Cu-0 planes or sets of planes, have recently
renewed the interest in very anisotropic superconduc-
tors. ' Such systems fall into two classes, depending on
the ratio t&/6 of the transverse electronic transfer in-

tegral coupling the planes to the two-dimensional mean-
field order parameter. If t&/d»1, one can use the
effective-mass model or anisotropic Ginzburg-Landau
(GL) theory governed by the anisotropy ratio
a (m&/trtt)' . On the other hand, if t&/5&1, cou-
pling occurs by Josephson tunneling between planes and
can be treated within the Lawrence-Doniach (LD)
theory. High-T, compounds (especially the more aniso-
tropic Bi-Sr-Ca-Cu-0 family) may fall in the second
class, at least at low enough temperatures. An indication
for this is given by the extremely small values of the
coherence length g&, estimated to be of the order of 1-3
A, and thus smaller than the distance d between super-
conducting planes. It is this last situation that we ad-
dress in this Letter, for a very schematic uniaxial struc-
ture made of alternating superconducting (S) and insu-

lating (I) layers. Some of the conclusions should equally

apply for an SS'S structure where weak superconductivi-

ty (S') is induced by a proximity effect in normal layers
(see also Ref. 10).

As far as the screening currents are concerned, Bu-
laevskii' has shown that the LD description essentially
reduces to the anisotropic GL one, provided one defines a
transverse mass from the Josephson coupling parameter
ri by ri t~/st: =h /2m&d (sF is the Fermi energy).
On the other hand, the core structure is drastically
aff'ected by the I layers. The cores of flux lines parallel
to the layers fit between the S layers and any motion
through the S layers involves an energy barrier, very
similar to the Peierls-Nabarro barrier for dislocations in

crystals. This offers the possibility to realize high intrin-
sic critical currents due to pinning at the atomic level

and perhaps overcome the limitations occurring for usual
flux pinning, due to melting of the flux lattice. More
precisely, as suggested by Friedel, " for a SIS structure
coreless vortex lines appear above some critical field

H, I~~, similarly to Josephson vortices. We show that due

to the anisotropy a perfect lock-in of flux lines parallel to
the layers occurs for some range of field orientation
dependent on field intensity.

Because of the large London penetration lengths A, ;
(m;c /4ttn, e ) 't for current flowing in the direction i,

one can in a first analysis separate in the flux-line energy
the out-of-core contribution (given by the anisotropic GL
theory ) and the core contribution which for an element
of line ds depends on the coordinate z along the normal
to the layers. This analysis should be refined by a calcu-
lation of the short-length-scale contributions. It is
sufficient for our purpose. Assuming the flux lines are
close to the layer direction, for an element (dx, dz),
dx/dz tane and 8' 90' —8 (see Fig. 1), and provided
the line curvature is weak, the line tension is given ap-
proximately by

2
dz 4o a 't I (8)
ds 4a)t, 1

—y(e, e) I (8)

where

a(z) -ao —a~ sin'(trz/d),

X

FIG. 1. Soliton lattice shape of the core of a flux line for an
oblique field. The direction of the field H and the local line
direction I are, respectively, defined by 8H and 8. Inset:
Configuration for parallel field and intrinsic parallel critical
current.
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A, = (A. ii A, & ) 'i is the averaged penetration length,
=(X/d)e', and 1(8)=(sin 8+a cos 8)'i. Here
y(H, e) is a small expansion coefficient given for small 8'

by y=e 8' /(2+a 8' ). The usual lower cutoff given by
the coherence length ( for the out-of-core contribution is

replaced by the S-layer separation d; a| & ao represents
the reduction of the core energy when lying between lay-
ers. We take here a simple sine modulation, valid if the
thicknesses of S and I layers are not too different. More
harmonics should be added to thicker I layers. Let us

comment on the values of ap and al. For a line element
parallel to the layers and its core in the S layers, the core
parameter is ap and corresponds to the condensation en-

ergy lost in the S layer. It should be of the order of the
usual value 0.497 (anisotropic GL theory) ' or perhaps
smaller for very thin S layers. For a line with core in the
I layers, a(z) ap —al. We take al & ap to account for
possible proximity eff'ects leading to a SS'S structure (S'
weaker than S). Moreover, al has a temperature depen-
dence due to that of the transverse coherence length (the
system crosses over to the three-dimensional behavior
when (i & d/ J2 and al vanishes). Finally, for a
straight line not parallel to the layers a(z) averages out
to a ap —a|/2, a value reduced from the three-
dimensional value by the presence of coreless portions (in
the I layers).

Let us evaluate the critical current for field and
current in the layers and orthogonal to each other. The
barrier against crossing of the S layers by the vortex
cores is [from Eq. (1)] b (pp/4H, ) s 'i al. The pin-
ning length being of order d, this yields a critical current
J, =ca|&pa 'i /(4') d. Taking, for instance, for Y-
Ba-Cu-O, the values Et' 1300 A, Xi 4500 A, d =8 A,
a 5 (see Refs. 1 and 13), and al 0.5 leads to J, =6.5
x10 Acm, close to the values measured in the best
films at low temperatures. This intrinsic critical current
is independent of the field intensity, since vortex lines are
trapped individually and on their full length. This type
of pinning is different from the usual pinning which is a
collective effect. J, is obviously temperature dependent,
due to thermal nucleation of kinks (producing creep) but
also because of the temperature dependence of the coher-
ence length. The lattice barrier height measured by al
must vary as for dislocations, i.e., al(T) =exp[ —c((T)/
d], where c is some numerical constant. '

The problem of first flux penetration has been already
studied in the anisotropic London theory. The flux
lines prefer to be oriented close to the easy directions
(here the layer directions); thus the induction B is not
parallel to the field H, making an angle OH with the z
axis. Let us now include the core trapping and calculate
in low fields the Gibbs potential of a single line, given by

with

2
l dz 6 2'+ dx —E —

q +—cos
2 dx 2 d

(3)

rii = (4p/4') 'a ' '(lnx ii+ a —a|/2)
the line energy parallel to the layers, K=2(pp/4+k)
xa i (lnxii+a), and 8=(pp/4+i, ) a 'i al. The core
term acts like a commensurate potential, the field impos-
ing to the line angle a "misfit" q, given by q =ppH
x(cosHH)/4+K. The minimization of the integral term
with respect to z(x) gives rise to the well-known sine-
Gordon soliton lattice. ' It shows a lock-in transition as
8 is increased, at a critical value of the misfit q, =(4/n)
x(b/2K)'i. For q &q, the lines enter parallel to the
layers. The first critical field is then determined by set-
ting G-0 with 8=90' in (3), yielding for the com-
ponents of H, i parallel and perpendicular to the lines

H, lii (4n/Pp)rii and H, i~ (4n/Pp)riicotHH. The lock-
in transition thus implies an extra transverse magnetiza-
tion. It is important to define H, i here as a function of
HH and not of Hg. The critical angle for lock-in of vor-
tices at H, i results from setting H =H, ] and q =q„ i.e.,

' 1/2
Inxii+ a —a|/2 n 1nxii+ a

tan8, 4
4~ +2ai (lnxii+ a) 4e 2a'

With the previous numerical values this yields 8, =19';
thus at H, i the region of field orientations for which vor-
tices are trapped between layers is fairly large. In an
idealized ellipsoidal sample and close to H, i the com-
ponents Hi of H are related to those of the external field
Hp by Hp; HI(1 n;)+n—;B;=H;(I —n;), where n; are
the demagnetizing factors. ' For a slab of dimensions
a b»c one has tanHH JtanHH = (2/n)a/c» I.

One expects from the above discussion a sharp varia-
tion with 8H of the critical currents in presence of a field:
for HH & H„J, would be only due to extrinsic pinning of
the kinks in the layers. On the other hand, for 80 )8„
in the absence of metastable kinks, J, is intrinsic. The
activation energy for kink formation in parallel fields can
be readily evaluated by setting q =0 and minimizing the
free energy F for the line core passing from an I layer to
another by a kink (here of the sine-Gordon type). A
classical solution gives for the kink energy and length,
E~ =(2d/n)42Kb and Lg =(2d/n) JK/28,

2

~ac = 4d 4p [al(lnxii+a)] '

x 4@k

90', thus dz/dx =90' —8=8'«1. Expandin~ (1) and
(2) for small 8' with ds=dx[1+(dz/dx) ]' and as-
suming eO'((1, G can then be rewritten on a unit length
as

PpH . 1
G = rI]

— sinHH ——Kq4x 2

G =
I ds — cos(HH —8)dr PpH

ds 4n
(2)

All angles 8 (but not HH) are supposed to be close to

1La=2'— (ln x.ii+ a.)
x a]

-
&/2

(5)
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With the same numerical values as above one obtains
Ex=0.12 eV and Ljr =100 A. A similar length would

be found in the soliton-lattice line shape for well-spaced
kinks. This calls for a remark. The kink length is much
smaller than the London length X. The flux tube thus
cannot bend on a whole on such a short length. The
problem is indeed very similar to short kinks in disloca-
tions in the case of strong Peierls barriers where the elas-
tic curvature is essentially confined in a volume whose di-
mension is given by the kink length. At larger distances
the deformation is much smoother. This simply amounts
to choosing the kink length Li( as the upper cutoff in the
line-energy calculation. ' The problem for flux lines is
similar since for lengths less than the screening length
the phase (and thus the current) deformations are elas-
tic. The modification entering in the logarithm is small:
If one would very roughly replace l(, by Lj( in x'i [Eq.
(I)], the kink length would be only reduced to 65 A. A
transition to abrupt kinks is not yet completely excluded
for very strong barriers and would need a separate
analysis. But the eff'ect would be negligible if a( is
smaller, or in higher fields (see the following). On the
other hand, Er, increases with the interlayer separation d
and with the anisotropy factor e, making creep less likely
in more anisotropic materials such as Bi compounds. It
has actually been found recently to be unmeasurable in

Bi2Sr2CaCu20s for field and current parallel to the lay-

ers, which corresponds to the geometry studied here. '

On the other hand, for H parallel but J perpendicular to
the layers, i.e., for flux-line motion parallel to the layers,
the quasiabsence of normal cores makes the vortices
glide easily, being hardly pinned by defects. This could
explain why the critical currents for H parallel and J
perpendicular are so low, even in single crystals. 's The
anisotropy of the critical current for fields parallel to the
layers is thus a crucial question. To finish this short dis-

cussion of intrinsic pinning effects, let us mention that
even in the so-called vortex-liquid phase, ' the core trap-
ping effect could prevent the wandering of vortices in the
z direction and thus preserve the remanence as observed
in Bi-Sr-Ca-Cu-O, p and also still give rise to large criti-
cal currents.

In higher fields H, i «H«H, 2, the calculation of the
equilibrium lattice energy can be performed as in Ref. 5,
but taking into account the periodicity D in the flux-line

direction. Each flux line v is determined by y y„and
z'=z, +g(x'), where g is periodic with period D. The
equation giving the local field apart from the vortex core
in the anisotropic case can be written in the continuum
approximation (valid as far as the screening currents are
considered) and is

8 hj
h; =A, g mklel„ek, j +go+i.;,8(r —r„), (6)

jk[z( Xz Bxi V

where e;~I, is the Levi-Civita symbol and

l, = (1+g'(x') J '"(1,0,g'(x') )
is the local directing vector of vortex line v (Fig. 1).

where k' (k„',k~, k,'). Solving (6), the magnetic contri-
bution to the free energy is calculated by

F d 3r' h 2+k 2g m; curl;h curl h

This expression is made explicit as usual by separating
the k„0 and the (k~, k, ) (0,0) Fourier components.
We take H, i «H«H, 2, assume as before that the line
direction is close to the layer direction, expand l(k') to
second order in g(x'), and assume that k, is small (i.e. ,
close to the lock-in transition), which gives in the xyz
frame the free energy

2

1+ '
8z dx

Ao (j3 1+ dz8
(4') '

' 2

ln

&/2.

Hc2

8 (8)

The second term neglects further contributions to the
line tension, of relative order I/4ir. Moreover, one
should, in principle, calculate the direction in which
kinks align themselves on different lines, forming a kind
of discommensuration. This can be done only to the or-
der k, g (x'); thus the periodicity is here simply as-
sumed to be along z'. The core contribution is added
phenomenologically as in the low-field case and one gets,
similarly to (3) but for a unit volume,

G (B+2H ) — sin8H ——K(q(
8 HB. 1

Sm 4m 2

2

+ dx —K( —q( +—cos
1 dz V 2jrz

2 dx 2 d

with the misfit parameter now given by q( HB(cos8H)/
4rrKi and H, K(, and V by

H* 8 ' ' ln
4'o

4',

i 1/2
Hc2

8 +a',

(10)

K, - (B+e'H*), V=8 Bgp '/3ai .
4x (4~~)'

Comparing ((jpp/B) Ki to K one observes the line
stiffening due to the interaction between lines. The
lock-in transition where the Aux lines become parallel to
the layers occurs at ql =q, =(4/jr)(V/2K|)'j. This
leads to the expression of the critical angle for H, i «H

921

Equation (6) is a set of differential equations generaliz-
ing those of Ref. 5 and where derivatives along the x'
direction now appear. Performing the three-dimensional
Fourier transform in the x'yz' reference frame yields the
linear system PjBj(k)hj(k) =go+„l„(k), where the
B;,(k) are functions of the k components and the l,(k)
are given by

I

l (k) I dx l( i ( i)) ilk~x'+k;g(x')1
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where H* is of the order of H, ~. This result, together
with the low-field result, can be represented on a phase
diagram (Fig. 2). The region of field orientations for
which the flux lines are trapped parallel to the layers in-

creases with the barrier height (measured by a&) and

with the anisotropy factor a, and decreases with the field

intensity. This region offers the possibility of strong in-

trinsic pinning. Typically, for fields of the order of 100
H, ~

(= 3 T) and a~ =0.5 the lock-in transition occurs at
8, 86' if a 5 (Y-Ba-Cu-0) and 8, 69' if a=55
(Bi-Sr-Ca-Cu-O, see Ref. 21). For the kink length one
finds L» 150 A in the first case and 850 4 in the
second. In addition, for a thin slab sample, using B& =0
for 8( 8„one still finds tan8ttgtan8tt = (2/tr)a/c. At
the lock-in transition, the field orientation 8 must vary

very abruptly as a function of the external field orienta-
tion. As a consequence, an extremely larger torque
should appear. Some recently obtained results ' are
consistent with the present picture, but it is diScult to
separate the reversible part from the irreversible one
which should be present as with any other source of pin-

ning. Further work is needed to study irreversible
eITTects linked to core trapping between layers.

After submitting this paper, we became aware of the
recent observation of strong lattice pinning in epitaxial
films of Y-Ba-Cu-0 25
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FIG. 2. Phase diagram in the H-8~ plane. Domains I, II,
and III, respectively, refer to the Meissner plane, the anisotrop-
ic flux lattice, and the intrinsic flux trapping region. The solid

line gives H, ~/H, ~i~ and the dotted line the lock-in transition.
The parameter values are given in the text (e 5).

well as Professor S. Barisic for valuable advice.

' Present address: Laboratoire d'Electronique et de Tech-
nologie de 1'Informatique, Avenue des Martyrs, 38000 Greno-
ble, France.

'See, for example, Materials and Mechanisms of Supercon
ductivity, High Temperature Superconductors II, edited by R.
N. Shelton i W. A. Harrison, and N. E. Phillips (North-
Holland, Amsterdam, 1989).

zL. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 64, 2241 (1973)
[Sov. Phys. JETP 37, 1133 (1973)].

3S. Barisic and P. G. de Gennes, Solid State Commun. 6,
281 (1968).

4R. A. Klemm and J. R. Clem, Phys. Rev. B 21, 1868
(1980); R. A. Klemm, Phys. Rev. B 3$, 6641 (1988).

sV. G. Kogan, Phys. Rev. B 24, 1572 (1981).
A. V. Balatskii, L. I. Burlachkov, and L. P. Gor'kov, Zh.

Eksp. Teor. Fiz. 90, 1478 (1986) [Sov. Phys. JETP 63, 866
(1986)].

7L. J. Campbell, M. M. Dorian, and V. G. Kogan, Phys.
Rev. B 38, 2439 (1988).

sW. Lawrence and S. Doniach, in Proceedings of the
Twelfth International Conference on Low Temperature Phys
icsKyoto, , 1970, edited by E. Kanda (Academic, New York,
1971),p. 361.

U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort,
and J. Z. Liu, Phys. Rev. Lett. 62, 1908 (1989).

' M. Tachiki and S. Takahashi, Solid State Commun. 70,
291 (1989).
"J.Friedel, J. Phys. (Paris) 49, 1561 (1988).
'zC. R. Hu, Phys. Rev. B 6, 1756 (1972).
' D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal,

and V. G. Kogan, Phys. Rev. Lett. 61, 2805 (1988).
'4J. Friedel, Dislocations (Pergamon, Oxford, 1964).
' A. L. Fetter and M. J. Stephen, Phys. Rev. 168, 475

(1968).
'sL. D. Landau and E. M. Lifshitz, Electrodynamics of Con

tinuous Media (Pergamon, Oxford, 1983).
'7F. R. N. Nabarro, Theory of Crystal Dislocations (Oxford

Univ. Press, London, 1967), p. 187.
' B. D. Biggs, M. N. Kunchur, J. J. Lin, S. J. Poon, T. R.

Askew, R. B. Flippen, M. A. Subramanian, and A. W. Sleight,
Phys. Rev. B 39, 7309 (1989).

'9D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988).
L. Krusin-Elbaum, A. P. Malozemoff, and G. V. Chan-

drasekhar, in Materials and Mechanisms of Superconductivi
ty, High Temperature Superconductors II (Ref. 1), p. 1553.

'D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z.
Ziang, K. G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys.
Rev. Lett. 63, 782 (1989).

~ZL. Fruchter and 1. Campbell, Phys. Rev. B 40, 5158 (1989).
T. R. Chien, Z. Z. Wang, and N. P. Ong, in Materials and

Mechanisms of Superconductivity, High Temperature Super
conductors 11 (Ref. 1), p. 343.

24J. Friedel, J. Phys. Condens. Matter 1, 7757 (1989).
B. Roas, L. Schultz, and G. Saemann-Ischenko, Phys. Rev.

Lett. 64, 479 (1990).

922


