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Nature of the Extended States in the Fractional Quantum Hall Effect
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We have measured the positions of the longitudinal resistance peaks in the fractional quantum Hall
regime and found that they agree well with those predicted by theory in which quantum effects are cru-
cial to the existence of extended states.
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It is believed that in the presence of a transverse mag-
netic field (8) the localization length diverges at the

centers of the Landau levels. The existence of such ex-

tended states is a crucial ingredient in the theories of the

quantum Hall effect' (QHE) and is necessitated by the

fact that the transport is dissipationless in the plateau re-

gion.
There are two limiting cases that have been considered

for the problem of the localization of an electron in this

context. The classical percolation model assumes a
disorder potential that varies slowly on the scale of the

magnetic length. In this case, within the semiclassical

approximation, it can be shown that the wave functions

lie along equipotential contours, and the localization

length at a given energy is simply the size of the largest
contour at this energy. Tunneling of the electrons be-

tween different contours at the same energy is neglected

in this model. It can be shown that there is a critical en-

ergy at which the localization length diverges and, if
one assumes a symmetric density of states (which will be
assumed in the rest of the paper), this energy corre-

sponds to the center of a Landau level. The other limit-

ing case assumes short-range impurities s (e.g. , b-

function potentials). In this case the localization length

is determined by a quantum coherence between the
different impurity states. It may not be as intuitively

clear as in the classical percolation model that there are
extended states in this model, but there is good theoreti-

cal evidence that the localization length again diverges at
the center of a Landau level.

It has not been possible to determine experimentally
which of these two limiting cases is relevant. In the
integer-quantum-Hall-effect (IQHE) regime (i.e., for
noninteracting electrons) both models predict the same

critical filling factors (i.e., the filling factors at which the
localization length diverges), given by v

The exponent that governs the divergence of the localiza-
tion length as one approaches a critical filling factor is

presumably different in the two models, i but the exper-

iments do not measure this exponent directly, and

therefore cannot unambiguously determine which model

is applicable to experiments.

In contrast, in the fractional-quantum-Hall-effect
(FQHE) regime the critical filling factors are predicted
to be different for these two models. In this paper we

report the measurements of the positions of the FQHE
longitudinal resistance peaks in very-low-disorder two-

dimensional electron systems (2DES) realized in GaAs/
A16aAs heterojunctions. We find that the results are
consistent with the values predicted by the short-range
impurity model.

The samples were rectangles several mm on each side
cut from wafers described previously. '0 The measure-
ments were done with an Oxford Instruments model
TLM-400 (top loading into mixture) dilution refrigera-
tor and a high-field superconducting magnet. The high-
resolution data were obtained with very slow magnet
current sweep rates ( =0.01 T/min) in order to keep the
sweep upsweep downshift" well within the experimental
uncertainty arising from other sources. We have ana-
lyzed the data' obtained from seven samples cut from
five wafers at temperatures from 0.4 K to 13 mK. At
higher temperatures the FQHE resistance minima devi-

ate substantially from zero and the positions of the resis-
tance peaks shift somewhat (in excess of our resolution)
as the temperature is lowered to 30-20 mK. The magni-
tudes of the high-temperature shifts appear to be sample
dependent. No appreciable shifts in the resistance peak
positions were noticed as the temperature was lowered
from 30-20 to 12-13 mK. ' The data for the best-
resolution sweeps for the two samples cut from wafers
M73 (n = 5.66x 10' cm ) and M97 (n = 1.03&& 10"
cm ) are summarized in Table I. Figure 1 gives a part
of the longitudinal resistance versus 8 trace obtained for
M97 at 13 mK.

Now we briefly discuss the theories that yield the peak
positions in the FQHE regime. The study of scaling in

the IQHE regime is greatly simplified by the fact that
the IQHE is possible for noninteracting electrons, which

allows one to neglect electron-electron interactions, and,
consequently, consideration of a single electron with en-

ergy equal to the Fermi energy is sufficient. However,
incompressibility at fractional filling factors is obtained
as a result of interelectron interactions, and it would
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often has a shoulder, suggesting evidence of two peaks;
see Fig. 2, for example. The shoulder peak structure is
usually weak or sometimes not even seen above the noise
level in some samples. It is, however, seen quite often in
other samples, often 2 or 3 times stronger than that in

Fig. 2. There is also some evidence for such a shoulder
peak for the 3 5 transition. The position of the
second peak in Fig. 2 is 0.633 0.002 which is consistent
with the prediction of the classical percolation model,
v"=0.6333. This suggests the interesting possibility
that between two adjacent FQHE plateaus the localiza-
tion length diverges not once but twice. This can be un-

derstood quite naturally if the actual 2DES is in neither
of the limiting cases discussed above, but in an inter-
mediate regime, in which the disorder potential is fairly
slowly varying, so that the classical percolation model is
a reasonable first approximation, but quantum correc-
tions are also included by allowing the possibility of tun-
neling between various semiclassical contours. In this
case, at v" there is a semiclassical contour which is ex-
tended, and it is plausible that inclusion of tunneling will

not change this. Away from v", all the classical states
are finite in size. However, an extended eigenstate is still
possible due to tunneling effects. Presumably, one can
calculate the filling factor at which there is an extended
state by ignoring the finite size of the classical states,
which leads to the critical filling factor vv. Thus the ex-
tended states at these two critical filling factors have two
different physical origins; in one case the extended state
is essentially classical in nature, whereas in the other
case it is extended because of the quantum effects.

That the classical peak is not resolved for all the tran-
sitions may be a result of the fact that the quantum peak
is expected to be much sharper than the classical peak
because the localization length diverges with an exponent
= —', in the quantum case as opposed to 3 in the classi-
cal case. When the two peaks are not resolved, as is the
case in the IQHE, the width of the peak may be dom-
inated either by the classical exponent or by the quan-
tum exponent. However, in the fractional regime, in

principle, at low enough temperatures one may be able to
resolve the two peaks and measure the two exponents
separately.

In the end, we would like to emphasize that the pre-
dicted values of vq and v" are obtained by assuming a
symmetric density of states and sufficiently weak disor-
der. Corrections to these values are expected for experi-
mental samples; these would depend upon the nature of
disorder and the specific transition in question.

In summary, we find that the filling factors at which
the localization length diverges are consistent with the
predictions of Ref. 9. This implies that tunneling effects
are important in the consideration of extended states in

the QHE. We also see evidence that during a transition
between two adjacent fractional quantum Hall plateaus
the localization length diverges at two filling factors. We

interpret one divergence to be of classical origin while
the other is of quantum origin.
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