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Treating the electrons in the Hartree-Fock approximation, we study the wave-vector dependence of
the spin-density excitations and the charge-density excitations of a double-quantum-well (DQW) system
in a strong magnetic field with total v 1. We conclude that as the distance between the wells increases,
the DQW system undergoes a phase transition, probably to a charge-density-wave state. We discuss the
possible effects of this phase transition on the quantum Hall effect.

PACS numbers: 73.20.Mf, 73.40.Lq

The study of a high-mobility two-dimensional electron
gas (2DEG) under strong magnetic fields 8 applied per-
pendicular to the electron layer has led to the discovery
of the integer' and the fractional quantum Hall effects
(QHE's). Recently, the study of the evolution of the
QHE states of a quasi-2DEG when the third dimension
is introduced has received much attention. This degree
of freedom can be introduced into the system in different
ways: by means of a new periodicity (superlattice) in

the third direction, by growing a wide parabolic quan-
tum well, or by fabricating a double quantum well

(DQW).
Recently, Boebinger et a/. have reported magneto-

transport measurements in DQW's. These experiments
show the absence of some plateaus in the integral QHE.
In particular, it is reported that as the barrier thickness
between the two wells increases, the integer plateau cor-
responding to the Hall resistance h/e is destroyed.
This state corresponds to the filling factor v=1 of the
total 2D density of electrons. In Ref. 5, the v 1 state
was associated with the symmetric-to-antisymmetric
(SAS) gap of the DQW and it was concluded5 that high
magnetic fields applied perpendicular to the quantum
wells can destroy this SAS gap.

In addition, several theoretical studies on a model
of two parallel 2DEG's coupled by the Coulomb interac-
tion have been performed. In this model of the DQW
system (which we will call the b' model) the electrons are
b-function localized in the direction perpendicular to the
2DEG and tunneling between layers is not allowed. Nu-
merical results ' on this model suggest that in the case
of v = 1, and for distances between layers around twice
the magnetic length 1 VA, c/eB, the Coulomb interac-
tion between electrons in different layers produces a
unique ground state and opens a gap in the energy spec-
trum, making possible the existence of the QHE. In the
same model and in the Hartree-Fock approximation Fer-
tigs has studied the charge-density excitations (CDE's)
of the normal state, in the case of v 1. By normal state

we mean a uniform distribution of the electron charge
equally divided between the two layers, and with single-
particle energies obtained self-consistently from the
Hartree-Fock equations. Fertig showed that as the sep-
aration between the 2DEG's increases, the dispersion re-
lation of the CDE develops a minimum at a wave vector
on the order of the inverse of the magnetic length. This
minimum becomes a soft mode for layers which are
separated by a distance on the order of the magnetic
length. Note that in the absence of tunneling the energy
spectrum corresponding to the CDE tends to zero with
the wave vector. Therefore, the b model is expected to
be a gapless system in the normal state and will undergo
a phase transition when the distance between the layers
increases. A generalization of the 8 model, in which a
SAS gap is simulated, has been reported recently by
MacDonald, Platzman, and Boebinger. These authors
studied the CDE of this model in the single-mode ap-
proximation and found that the system undergoes a
phase transition as the barrier between the electron lay-
ers increases. They argue that this transition destroys
the SAS gap, and therefore the QHE.

In this paper we study the electronic properties of a
more realistic DQW system in the presence of a strong
perpendicular magnetic field corresponding to v= l. We
treat the electrons in the effective-mass approximation.
The barrier between the wells has a height Vb and a
thickness db. Tunneling between wells is inherently in-

cluded in this model. We calculate the eigenstates and
eigenvalues of the normal state of the system in the
Hartree-Fock approximation, and investigate the CDE
and the spin-density excitations (SDE's) of the system
using the self-consistent approximation discussed by Kal-
lin and Halperin' and applied by Fertig to the 8' model.
In this approximation, the existence of soft modes indi-
cates that the system undergoes a phase transition.

In the Hartree-Fock approximation, with the magnetic
field applied in the z direction, with v = 1, and assuming
translational invariance in the (x,y) plane, the wave
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functions and the self-energies of the normal state take
the form"

(r)= e ' vp(x —kyl )g; (z)U(cr),

Here L~ is the dimension of the sample in the y direc-
tion, yp is the lowest eigenstate of the one-dimensional
harmonic oscillator, cr is the electron-spin variable'
(t, j), U(cr) is the spin-wave function, ro, =eBjm*c is
the cyclotron frequency, m* is the electron effective
mass, and E; and g; are obtained from
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In this expression g is the effective Lande factor, p(f is the Bohr magneton, S, is —,
' for' o =t and —

—,
' for cr= j, e is

the dielectric constant, erfc is the complementary error function, V(z) is the manmade potential, VH(z) is the Hartree
potential, and the last term in Eq. (2) corresponds to the exchange self-energy. The index s stands for the symmetric
state.

Solving Eq. (2) and the Hartree potential VH self-consistently, we obtain E; and g; (z); this allows us to calculate
the CDE and the SDE's of the system. The SDE's correspond to excitons where the electron and the hole have different
spin orientations, and therefore the energies of the SDE come from the poles of the spin-density response function. In
the self-consistent approximation, 'p working in the lowest Landau level and taking into account only the symmetric and
antisymmetric states, we find that the frequencies of the SDE are given by

(3)

where q is the wave vector of the excitation, i can be s (symmetric), or a (antisymmetric), and

2

V; ( (, ( (q) dk e ' Jp(kql ) dzdz'e ' '
g; (z)g( (z')g(, (z)g( (z'), (4)

where Jp is a Bessel function. The excitation of frequency rp, (q) corresponds basically to an exciton in which the elec-
tron and the hole reside in the symmetric state but with different spin orientation. Similarly, the branch rp, (q) de-
scribes an exciton in which the hole is in the symmetric state with spin parallel to the field and the electron resides in

the antisymmetric state with spin antiparallel to the magnetic field.
The CDE corresponds to excitons where the electron and the hole have the same spin orientation; therefore the ener-

gies of the CDE come from the poles of the charge-density response function. Using the same approximations as for the
SDE case, we obtain that the frequency corresponding to the CDE is

hrp (q)-j[E, f E, f V f
—

f f f(q)+V, f,f,f, f(q)]

[E,f E, f V f,of, f, f (q) —
Va f, a f,s f,s f (q)+2Vaf, sf,sf, af (q)]I &/2

where
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2e ~ dzdz'e v ' '
g; (z)g( (z')gk (z)g( (z') if q/0,

e2 1—2„dzdz'Lz z'Lg(a(z)g~ —a(z')gk (z)g(a(z') if q=0.
E

The excitation frequency co~(q) describes an exciton in

which the hole and the electron have the same spin
orientation, but they reside in the symmetric and an-
tisymmetric state, respectively.

We study the SDE and the CDE as a function of the
wave vector of the excitation and the thickness of the
barrier db. The parameters we have used for the calcula-
tion are rn* 0.067, a=12.5, g* 0.44, and Vb =250
me V. The two-dimensional density of electrons is

n, 3.8X10" cm and the thickness of each well is

d„ 1 39 A. The background of positive charge consists

L of two uniform layers of equal charge density, 200 A
thick, and is located 250 A from either outer edge of the
DQW structure.

In Fig. 1 we show, as a function of db, the energies
corresponding to the q =0 SDE's [ro, , (q =0)1 and CDE
[co (q =0)]. This figure shows that as required by
Larmor's theorem the energy hro, (q=0) is independent
of d(, and equal to the Zeeman energy Lg*p&BL. For the
same reason hco, (q=0) =Lg*p((BL+hsAs, where hsAs
is the one-electron SAS gap which decreases exponen-
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FIG. 1. Variation of the q 0 excitations of a DQW system
as a function of the thickness of the barrier db. The parame-
ters of the calculation are given in the text. Inset: DQW sys-
tem shown schematically.

FIG. 2. Variation of the q ~ excitations of a DQW sys-

tem as a function of the thickness of the barrier db. The pa-
rameters of the calculation are given in the text. Also plotted
is the variation of hsAs gap as a function of db.

tially with db. As expected we find that the frequency
corresponding to the q 0 CDE depends strongly on the
separation between the wells. The limit corresponding to
the b model ko~(q 0) 0] is obtained when db&&d .
Only in this limit there is an exact cancellations between
the Hartree-Fock enhancement of the SAS gap and the
vertex corrections V, and then roc(q 0) 0. In other
cases, co (q 0) is strongly dependent on the electron-
electron interaction, and is generally larger than h)As.
This is why, for thicknesses of the barrier smaller than
120 A, the energies corresponding to SDE are lower in

energy than those corresponding to CDE (see Fig. 1).
In Fig. 2 we show the q ao limit of the SDE's and

CDE. In this limit, the exciton consists of an electron
and a hole infinitely separated, ' thus the corrections V
and V are zero, co~(q)-E, 1

—E, 1, ro, (q) E, 1
—E, 1,

and ro, (q) E, 1 E, 1. The lowest o—f these gaps is re-
sponsible for the plateau v 1 in the QHE. These three

gaps decrease with db, but the gap corresponding to the
CDE decays faster than those corresponding to the
SDE's. Thus we obtain that, for large values of ql and
small values of db, the lowest gap is a SDE but for larger
values of db the smallest gap is the CDE corresponding
to the SAS transition. This transition occurs at a dis-
tance between the wells of around 18 A. Note that, due
to the self-energy corrections [Eq. (2)], the gap E, 1—E, t is considerably bigger than the one-electron SAS
gap &(As (see Fig. 2). Since at large db, this gap is re-
sponsible for the plateau v I in the QHE, we conclude
that in the normal state, even for very small hsAs, it is

possible to observe this plateau in the transverse magne-
toresistance.

In Fig. 3 the wave-vector dependence of the CDE and

SDE's of the system is shown for two values of db. For
ql((I, the energy spectrum corresponding to the SDE's
[ro, ,(q)] varies quadratically with ql. This behavior is
the same for different thicknesses of the barrier and is of
the form one expects for spin-flip excitations. ' The
difference in energies between the symmetric and an-

tisymmetric SDE s is around h)As, and is practically in-

dependent of the wave vector q. More interesting is the
behavior of the energy spectrum of the CDE [ro (q)].
For q/ ( I the dispersion relation decreases with the
wave vector, developing a minimum at values q/ —1.5.
By increasing the distance between the wells this
minimum becomes deeper [Fig. 3(b)] and for separations
between the wells larger than a critical distance d$ the
dip becomes a soft mode which indicates that the system
undergoes a phase transition. For the parameters we are
using, we have found df-23 A..

The fact that for a certain d$ and for a certain wave

vector q' the frequency co becomes zero implies that the
static charge-density response function of the DQW sys-

tem diverges at this wave vector, and therefore that the
system is unstable against the formation of charge-
density waves (CDW's) of wave vector q. Then, we ex-

pect that the phase transition we have found leads the
system to some kind of Wigner crystal. We believe this
is also the case in the works of Fertig and MacDonald,
Platzman, and Boebinger. This new CDW state is ex-
pected to have a gap in the excitation spectrum. But this

gap does not allow the existence of a plateau in the Hall
resistance since one might expect the CDW to become
pinned by the impurities. Thus, we conclude that the
vanishing of the plateau v=1 in the experiment of Ref. 5

can be understood by means of this phase transition.
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to spin-density excitation. In the limit of q ~ and for
small db the lowest energy gap is a SDE, and changes to
a CDE when the distance between the wells is around 18
A.. (ii) The system undergoes a phase transition, prob-
ably to a Wigner crystal, as the separation between the
wells increases. This phase transition occurs at d$ —23
A.. We suggest that this phase transition is responsible
for the destruction of the plateau v=1 in the QHE ex-
periments.
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FIG. 3. Dispersion relation of the CDW (rue) and the
SDE's (ros, ) for a DQW system with (a) db 10 A and (b)
db 20 A. The parameters of the calculations are given in the
text.

The calculated critical distance df, where the phase
transition occurs, is smaller than the experimental value
where the v 1 plateau disappears. But we think that
the agreement between the experiment and our calcula-
tion is good enough and shows that our theory retains the
more important features of the physics of the problem.

In conclusion, we have found the following for a set of
parameters describing the DQW of Ref. 5: (i) The q =0
lowest energy excitation of the DQW system corresponds
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