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Tunable Fractal Shapes in Self-Avoiding Polygons and Planar Vesicles
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The shapes of self-avoiding continuum and lattice polygons of Ã monomers in a plane are studied us-

ing Monte Carlo simulations and exact enumeration. To model vesicles, a pressure increment

Ap p,.—p„t, is included. For N))1 and hp 0, the usual universal fractal shapes appear; but for
hp~0, continuously variable fractal shapes are found controlled by the variable x~hpN'" where
v 1/Dr 3/4. Thus, the ratio of principal radii of gyration Z(x) =(Ro;„)/(Ro,„) changes smoothly

from Z(+~) 1, for circles, through Z(0)=0.39, to Z( —~)=0.23, which corresponds to branched

polymers.

PACS numbers: 05.40.+j, 05.50.+q, 36.20.Ey

Consider a statistical ensemble of geometrical objects,
say, clusters, polygons, vesicles, etc. , in an isotropic Eu-
clidean space generated by a physical process which
respects the isotropy. The overall ensemble-average
shape of an object must, likewise, be spatially isotropic.
However, as emphasized by Family, Vicsek, and Mea-
kin, ' the actual mean shapes of an object referred, say,
to its own principle axes of gyration may be anything but
isotropic; indeed, for the asymptotically large fractal
clusters arising in branched polymers (or lattice an-
imals), percolation, and growing percolation models in

two dimensions, they demonstrated that the shapes were
universal, within each class of models. More concretely,
if RG~ and RG2 are the minimum and maximum eigen-
values of the radius of gyration tensor, Family, Vicsek,
and Meakin' estimated the anisotropy ratios Z=(RG~/
RG2) obtaining distinct values for each problem. Thus
the value of Z, like the exponent v, or fractal dimension
DF= 1/v, etc. , ch—aracterizes the universality class and re-
lated renormalization-group fixed point.

Following Family, Vicsek, and Meakin e expansions
and exact lattice enumerations have been performed for
the shapes of percolation clusters and branched animals.
In addition to the anisotropy Z, defined above, the
asphericity 6 ((RG~ —RGq) )/((RGt+RG2) ) has been
utilized. For polymer chains, modeled as random walks
or, better, as self-avoiding walks, the question of shape
has a long history and corresponding universal shape
ratios have recently been calculated by Monte Carlo
simulations and by analytical means both for chains
and for rings or polygons

Here we ask the following: "Within a given universal-

ity class, such as self-avoiding walks, how invariant actu-
ally are the associated fractal shapes?" This question
arises rather naturally from a study of the statistical
mechanics of two-dimensional vesicles by Leibler, Singh,
and Fisher (LSF). LSF model vesicles as closed loops
of N hard beads (disks) of diameter a linked by loose
bonds or "tethers"' of length 10= —', a, from bead center
to center. An "osmotic pressure" difference,

Ap =p;„p,„,=pktt T/a', — —

=0.230+ 10 or Z =0.275 ~ 10, (3)

being expected for p = —~. (The Z value is new; Z
accords with previous studies yielding ' 0.29 and
0.280~ 3. )

Alternatively, can the fractal vesicle shapes vary con-
tinuously as p is changed? We argue here that this last
possibility is actually realized as N ~ provided Z, and
the other shape parameters, are examined on the scale

x =DpN~' with p =2, (4)

is introduced with an associated Boltzmann factor e
where A is the vesicle area. A rigidity tc also played a
significant role for LSF whose main focus concerned the
characteristic, nonfractal, cytotype shapes arising from
the interplay of de/ation (Ap &0) and large rigidity.
However, an extensive fractal region, evidently con-
trolled by the self-avoiding-walk fixed point with size ex-
ponent" v —,', was observed as P varied with tc 0 (or
tc fixed and N »1). For large injfations (p & 0) the typ-
ical shapes generated in the Monte Carlo simulations
appeared circular; for large desolations the closed loops or
polygons collapsed into configurations resembling
branched polymers. This identification was reinforced
by the size dependence in the limit P —~ which cor-
responded to ' v =0.641.

How do these changes of shape take place as P varies?
For hp 0 we should observe shape parameters in ac-
cord with previous results for self-avoiding rings.
Indeed we estimate, ' for N

ZO (RG I)/(RG2) I p-0-0.393 ~ », (2)

fully consonant with the Zo 0.405 ~ 9 found for N =32
and larger values observed for N & 32. 6 However, when

hp becomes positive and N ~, does Z first stick at the
value Zn only ultimately jumping discontinuously to
Z+ 1 (for circles) at p + ~? Or does Z switch im-

mediately to the value 1 as soon as Ap exceeds 0? See
the dash-dotted and dotted lines in Fig. 1. The analo-
gous questions arise when Ap becomes negative with,
now, the branched polymer values, which we estimate
as4"
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FIG. l. Variation of the shape parameter Z with the scaled
variable x on a nonlinear scale set by eo 0.30. Note that Zo

and Z represent asymptotic (N ~) values for self-avoiding
ring polymers and branched polymers, respectively; 2+=1 de-
scribes circles.

FIG. 2. Estimates Ao, ~ (A)N/(N —no)'" with v —,', for
the area amplitude Ao for continuum and lattice polygons (in
units of a', at Ap 0). The lines indicate reasonable extrapo-
lations to 1/N 0.

{A)= A N O"Y(x), (Ra) = RON 'X(x), (5)

with v~ = v,
' where we have adopted the normalizations

Y(0) =X(0) 1. Further, since the scaling functions
should be analytic for small x, we may define D in (4) by
setting Y~ =—(dY/dx)o =1. Then all other derivatives
Y2, . . . , X~,X2, . . . should be universal.

Actually LSF found 2 v~ = 1.52, 2v= 1.51, and
=2.13. We attribute the deviations from' v~ =v=

4

and y=2 (which follows from A scaling as Ra-N ")

where D is a suitable nonuniversal metrical factor.
Monte Carlo simulations and exact series data' confirm
this proposition. Thus we have vesicles (or "pressurized
polygons") with tunable fractal shapes all of which,
however, have the same fractal dimension DF 1/v=4/3
(at fixed x). Figure 1 portrays the variation of X with x;
as x ~ ~ we find that specific power laws character-
ize Z(x).

More generally, this type of continuous variation of
fractal shapes at fixed fractal dimension should apply to
many analogous problems where there exists a natural
relevant variable similar to p, e.g., near-critical Ising-
model clusters, appropriately defined, '5 with a magnetic
field allowed for. However, the crossover exponent
p—=pv may not always be simply related to other ex-
ponents as in (4).

To justify these conclusions, ' recall first that LSF
studied the mean area (A) and the radius of gyration
{RG)={Ra ~)+(RG2) and verified the scaling laws

z—=Ao/Ro =2.52+ 4 and 2.55~5, (6)

which exemplifies the anticipated universality for Ap
=0. ' Of course, n=+ for circles but, in fact, aligned
but superposed vesicle configurations, as presented by
LSF, yield a fuzzy, roughly elliptical "cloud, " less dense
at the center, with semiaxes in the ratio a/b =0.64. No-
tice that (0.64) =0.41 which agrees, somewhat surpris-

mainly due to finite-size effects (N &100). Indeed, the
amplitude estimates Ao tv—= (A)0/N ", etc. , should vary as
I +c&/N~+ c~/N+ . . . If the leading correction ex-
ponent satisfies 8& 1, or if cz is relatively small, the dom-
inant corrections can be effectively gauged in plots versus
1/N by replacing N by N —no for various choices of "n
shift, " no Exper.ience with series extrapolations for lat-
tice critical phenomena suggests that small values of no
(= ~ 1) should sufftce for first cumulants of the under-

lying distributions while successively larger values are
needed for higher cumulants. Surprisingly, perhaps, we
find closely similar behavior for our continuum simula-
tions (which extend LSF); see, e.g., Fig. 2 which com-
pares the estimation of Ao for continuum and lattice
models. ' Note that lower statistical precision at large N
(aggravated by longer equilibration times ) tends to can-
cel the desirable advantage of small 1/N. Estimation of
Ro, Zo, etc. , proceeds similarly. '

For a square lattice (of spacing a) and for the contin-
uum model we find Ao/a =0.1415+'3 and 0.314~3,
respectively, and
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ingly, with the corresponding anisotropy estimate (2).
Taking Ap~0 and performing further simulations'

enables us to check the proposed shape scaling relation

Z- = Z(x) =Z.(I+W, x+ ) .p, N (7)

The good data collapse for N =10-84 seen in Fig. 1 sup-
ports the hypothesis. The estimation of the scaling func-
tion Z(x) is improved by extrapolation to 1/N=O at
fixed x (as in Fig. 2). For x &0 merely using the values
no= —0.4 and 0.7, found optimal for (RG ~ )Jv and

(RG2)Jv, sharpens the collapse significantly; for large pos-
itive x, however, bigger values of no are needed. If (7) is

valid, the universal amplitude W~ can be estimated by
extrapolating data for hp =0 via

DHOW] = X,
1

N" aP

(RG)A)o(RG2&p (RG2A)p(RG~)p

(N —no) '(RG2)0
(8)
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FIG. 3. Monte Carlo estimates of the parameter DZOWI for
continuum polygons; this determines the slope of the universal
shape scaling function X(x) at x =0.

as shown in Fig. 3, and similarly for DW~. The fairly
well defined finite value indicated by Fig. 3 supports the
scaling hypothesis. By making analogous estimates for
Y~ ( = 1) and X~ [see Eq. (5) et seq. ] we find D
=0.0175~ 15 and then X~ =0.65+'20 and W~ =0.78
+ 10. Crosschecks on the value of W~ (and Zo) follow
from estimates for the amplitudes R ~ p, R2 p, and scaling
function derivatives X~ ~

=1.21+ 12 and X2 ~
=0.41+6,

for (RG~) and (RG2). The slope corresponding to W~ is
shown as a dashed line in Fig. 1; it agrees well with what
might be concluded by interpolating for small x
(= ~ 0.2).

Note that when N ~ at fixed pWO, the scaling (7)
implies that vesicles should rapidly inflate to circular
form for p )0 or deflate to branched polymers for p & 0.
In this sense the shape change may, indeed, be con-

sidered asymptotically as a discontinuous function of Ap
(as originally suggested by the dotted lines in Fig. 1).
More specifically, however, it follows that the limiting
behavior of Z(x) when x —~ should be controlled by
the correction-to-scaling exponent, 0 =0.87 + 7 & 1,
for branched polymers. This conclusion can be
checked by plotting Z (and Z, 6, and A) (Ref. 4) versus
x '- N ' . On discounting data points for x
& —5.6, since equilibration is inadequately fast for

large ~P ~, linear behavior is found. Indeed the expres-
sion

Z(x)=Z-(I ~ W,-/~x~' ) (x~o), (9)

with y =e /2 v =0.58 and W
~

=0.36, provides a
good fit in the deflated regime up to x + —

2 .
In the inflated regime a vesicle becomes close to a cir-

cle of mean radius R(N,P) but with transverse (radial)
fluctuations, u(8). Then the shape ratio will vary as
Z= (R chR—) /(R+cdR) = 1 4c(LLR/R—) when R

~, where hR =(u )'l2 and c =0(1). To estimate
(u ) we regard the vesicle as having a surface tension y
related to the pressure, as usual, via hp =(d —1)y/R
(with d=2 here). Now the low-amplitude transverse
thermal vibrations of a string of length L (=2zR) under
a tension y obey (u ) =keTL/y-keT/hp. ' Thus we
expect 1

—Z-(keT/ApR )'l . Last, one can show
that R varies as p"N' in the inflated regime with r0

=(1 —v)/(2v —1) =1/2 and v+ =v/(2v —1) =3/2.
Substitution yields (9) for x +~ with y+ = 1/2
x(2v —1)=1. The Monte Carlo data (up to N=150)
confirm this; indeed, (9) with W~+ =0.32 fits well. 2

One may also enquire as to how n(x) [see (6)] ap-
proaches x when x ~. For near-circular vesicles one
has 1

—z/x=2(u )/R -x v . The data for x ) 1

are quite consistent with this predicted x approach
(although a decay as slow as x ' cannot be excluded).

Finally, we note that the rigidity x is an irrelevant
variable at the self-avoiding-walk fixed point. Thus our
results for Z(x), which should be a universal function,
are independent of x provided l„—= x/keT((Na; only the
metrical factor D will change with x. Conversely, for
l„+Na one enters the regime of nonfractal, cytotype
shapes. '

In conclusion, we have shown that the fractal shapes
of two-dimensional vesicles or polygons of fixed fractal
dimension DF =

3 can be tuned continuously from circu-
lar to branched polymeric by varying the pressure
diA'erential hp on a scale x/N ~. The universal scaling
function X(x) for the shape ratio &RG~&/(RG2) has been
estimated numerically for all x. When x ~ ~, X(x)
exhibits characteristic power laws; for x &0 the ex-
ponent is determined by the correction-to-scaling ex-
ponent for branched polymers; for x & 0 one has 1

—Z
—1/x.
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