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Optical-absorption and luminescence measurements on ' C and ' C diamonds establish that the in-
direct energy gap is 13.6 ~0.2 meV higher for "C than for "C diamond. Zero-parameter calculations,
allowing for the changes in electron-phonon coupling and lattice parameter, give an estimated shift of
16.5+ 2.5 meV.

PACS numbers: 78.20.Dj, 78.55.Hx

In this Letter we report the first measurements of the
variation of the electronic energy gap of a semiconductor
with its isotropic composition. We show that the indirect
electronic energy gap of diamond increases by 13.6 ~ 0.2
meV from ' C to ' C. A simple zero-parameter calcula-
tion shows that the change can be closely accounted for
in terms of the isotopically induced changes in the
electron-phonon interaction and in the lattice volume.

The ' C diamonds used here were grown from 99%
' C amorphous carbon. The powder was compressed
and heated in a vacuum at 1800-2000'C to remove ad-
sorbed gases. The compressed disk formed the source
material in a growth cell using Fe as the solvent catalyst
and 1 at. % Zr as a nitrogen getter. ' Diamonds with di-
ameters of 2 to 3 mm were grown in 18 h at 6 GPa and
1500'C.

By minimizing the incorporation of nitrogen, the dia-
monds were optically transparent for photon energies up
to the energy gap (which is at 5.47 ~ 0.005 eV at 295 K
for ' C diamond ). Absorption measurements at room
temperature and 77 K were made after polishing a pair
of parallel optical windows on the samples. Lumines-
cence was generated using 45-keV electron-beam excita-
tions with a beam of typically 10 ItA focused to 300 pm
diameter and with the samples embedded in indium on a
copper cold finger at 77 K. Spectral calibration was
checked by superimposing the emission of a Fe-Ne hol-
low cathode discharge lamp on the measured spectra.
The cathodoluminescence spectra have not been correct-
ed for the wavelength-dependent response of the optical
system.

Natural diamond is 98.9% ' C and 1.1% ' C. The op-
tical features associated with its indirect energy gap are
well known. The valence-band maxima are at k=0
and are split by a spin-orbit interaction of =6 meV.
The minima in the conduction band lie at wave vectors
k =k;„=0.76 ~ 0.02 of the (001) zone boundary.
When an electronic transition occurs between the va-
lence- and conduction-band extrema in optical-absorp-
tion and luminescence processes, the wave vector is con-
served by the emission or absorption of phonons. The
peaks labeled A, 8, and C in Fig. 1 are due, respectively,
to the recombination of a free exciton with the emission

of transverse-acoustic, transverse-optic, and longitudi-
nal-optic phonons of wave vector ~ k;„and quanta in
' C diamond of

AcoTA 87 ~ 2, AtaTo = 141 ~ 2,

htoLo 163+ 1 meV.
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FIG. 1. Spectra measured at 77 K of the phonon-assisted
free-exciton cathodoluminescence features (A, 8, and C) and
the phonon-assisted bound-exciton features (D) from a natural
semiconducting ' C diamond and a ' C synthetic diamond.

Features B2 and B3 are further free-exciton processes in-
volving a TO phonon of ~ k;„plus, respectively, one
and two k-0 optic phonons. Additionally, luminescence
is observed from the decay of excitons bound to effec-
tive-mass-like boron acceptors. The natural diamond
has an uncompensated boron concentration, determined
from Hall-effect measurements, of 5 x 10' cm . The
boron concentration in the part of the ' C diamond ex-
amined is estimated to be about 3X10' cm from the
ratio of the intensities of the free- and bound-exciton
peaks; this impurity was present as accidental contam-
ination from the growth environment. These impurity
concentrations are too small to perturb the crystals' band
states. The bound-exciton spectrum is shown in more
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detail for the '3C diamond in Fig. 2. Two zero-phonon
components Dp and Dp occur at energies

FIG. 2. Detailed spectra measured at 77 K of zero-phonon
cathodoluminescence from bound excitons (Do and Dp) and

phonon-assisted features (D~, D~, and DI') in "C diamond.
The arrows mark the predicted thresholds of the free-exciton
features 8, B, and C, as derived in the text.

E,h(A) =Eg, —hcoTA, E,h(B) =Egx —hcoTo,

E(h(C) =Eg„—hcoLp.
(3)

The vertical arrows in Fig. 2 show the predicted positions
of these thresholds in ' C using the phonon energies for
' C listed in Table I, and with

Near-band-gap luminescence from ' C diamond oc-
curs at higher energies than the corresponding features
in ' C diamond (Fig. 1). Table I lists the energies of the
bound-exciton features in ' C diamond and compares
them with our data for ' C, which agree with those of
Ref. 3. From Table I, the zero-phonon exciton lines Dp
and Dp are 14 ~ 0.7 meV higher for ' C than for ' C di-
amond. The phonon energies AcoTO and ALLO, derived
from the energies of the zero-phonon lines and the one-
phonon peaks D~, D~~, and DI', are lower by a factor of
0.96, equal within experimental error to the factor
( —,", ) ' 0.961 expected to first order when the lattice is

changed from ' C to ' C.
The free-exciton peaks A, B, and C are broadened by

strain in the crystal, by thermal effects, and by the split
valence-band structure. The low-energy thresholds are
at3

E(Dp) =Eg„E4„, E(—Dp) =Eg„E4„, —(2) "E -"E +["E(Dp)—"E(Dp)]

where Es„and Eg„are the energies of excitons associat-
ed with the upper and lower valence bands, and E4„and
E4„are the binding energies of the upper and lower
valence-band excitons to the neutral acceptors. The
peaks D~ and D~ are TO phonon replicas of Dp and Dp,
and D~' is the LO phonon replica of Do. Consequently,
D~ and D~ occur at an energy hcoTo below Dp and Dp,
and D~' is at hcoLo below Dp. The natural diamond has
an uncompensated boron concentration, determined from
Hall-effect measurements, of 5 x 10'6 cm . The boron
concentration in the part of the ' C diamond examined is
estimated to be about 3 X 10' cm from the ratio of
the intensities of the free- and bound-exciton peaks.
These concentrations are too small to perturb the crys-
tals' band states.

where the superscripts denote the isotope. The use of
Eg, assumes that the binding energy E4„of an exciton is

the same in ' C diamond as in ' C diamond; this is

justified by the exciton having very similar states wheth-

er it is bound or free, so that the bound and free states
will be equally aA'ected by the isotope change. The pre-
dicted thresholds shown in Fig. 2 appear to be consistent
with the experimental data.

Figure 3 shows the absorption edge of the ' C dia-
mond measured at room temperature and at 77 K.
Three thresholds are visible in the room-temperature ab-
sorption spectrum. Thresholds i and ii correspond to the
creation of an exciton with the absorption of a TO pho-
non or a TA phonon, respectively, and iii corresponds to
the creation of an exciton with the emission of a TA pho-

TABLE I. Energies and energy separations in meV of bound-exciton features in ' C and ' C
diamond. The nomenclature is discussed in the text.

Feature

D(')

Dp

Dl
D

II

l 2C

5368+ 0.5
5356 w 0.5

5227.0 w 0.3
5214.8+ 0.3

5193~ 0.5

13C

5382+ 0.5
5370 ~ 0.5

5246.5+ 0.3
5234.6 ~ 0.3

5215 ~ 0.5

Difference

14+ 0.7
14 ~ 0.7

Phonon derived from

hcoro E(Do) —E(Di)
hcoro E(DO) E(Di)—
h coLQ E (Do) E(D )")—12C

141.2 ~ 0.6
141.0+ 0.6

163 ~ 0.7

13C

135.4+ 0.6
135.5+ 0.6

155 ~ 0.7

Ratio

0.959 + 0.006
0.961 ~ 0.006
0.951 + 0.006
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mco, producing the temperature dependence as in (4).
At low temperature (u ) =6/2mco, giving an isotope
dependence because (' u )/(' u )=(12/13)' . Conse-
quently, at 0 K, changing the isotope gives a contribution
to '

Pg~ —'
P&~ of

&i= 2 [( —,", )'"—l]~ deaf(co)

13.5+ 2 meV. (5)

Although the best fit to the data in Fig. 4 is obtained
when f(co) =ccog(co), adequate fits are obtained for
f(co) =c'co g(co) to f(co) =c"co' g(co), producing
most of the uncertainty quoted in (5). The 20% uncer-
tainty in a contributes a further 0.1 meV to the uncer-
tainty in (5).

A second contribution ht to the isotopic dependence of
Eg„comes from the volume change produced by chang-
ing the isotope. The equilibrium volume of a crystal is

obtained when its free energy is minimized, and at 0 K
the free energy contains the zero-point energies of all the
modes of vibration. In diamond the frequencies of vibra-
tion decrease with increasing volume. If the molar
volume of a purely harmonic crystal is Vp, its zero-point
energy at a volume Vp+hV would be —,

' Ph. co;(I —
y;

xAV/Vp), where y; is the Griineisen parameter of the
ith mode. The volume will increase until the reduction
in zero-point energy is balanced by the increase in elastic
energy, —,

' (ct~+2ct2)(dV /Vp). This balance occurs at
LlV=[3/2(c~~+2c~2)]+ft, co;y;. The difference in molar
volume of ' C and ' C is therefore

"V—"V= gt;y;[( —'„' )'"—ll,
2(cii+2ctq)

(6)

We have previously estimated the volume change in

similar diamonds using the change (by —50 cm ') in

the Raman frequency ' as

("V—"V)/ "V= —(1.0+ 0.07) x10

Using both these estimates we obtain a shift to the ener-

gy gap of

tJ2=a(ct~+2c~2)(' V —' V)/3 ' V=3~ 1.3 meV.

where the frequencies are for ' C, and the sum is over
3N modes of vibration, N being the Avogadro number,
and density of phonon states being known. Values of
the Griineisen parameter'' span the range y=1.15-1.6,
so that the fractional volume change is

(' V—' V)/' V —(1.45+ 0.15)x10

Although there is a large uncertainty here, this term is

small compared with A~.

For completeness we note that for a mode with a typi-
cal Griineisen parameter of 1.3, the volume change from
' C to ' C modifies the ratio of the frequencies to '

cp/
'

co =0.963, equal to the first-order effect ( —,", ) 't

=0.961 within experimental error.
We have shown that the indirect energy gap of dia-

mond changes by 13.6 ~ 0.2 meV when the isotope com-
position changes from ' C to ' C. Most of this shift is
caused by the isotopic dependence of the electron-phonon
coupling, giving a shift estimated from the temperature
dependence of the energy gap as ht =13.5 ~ 2 meV. An
additional smaller contribution, estimated to be h, 2=3
~ 1.3 meV, comes from the difference in molar volume
of ' C and ' C diamond. The total shift estimated with

no adjustable parameters of 16.5~2.5 meV is closely
comparable to the measurement.
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