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Absence of Localization in a Random-Dimer Model
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We consider here a 1D tight-binding model with two uncorrelated random site energies €, and €, and
a constant nearest-neighbor matrix element V. We show that if one (or both) of the site energies is as-
signed at random to pairs of lattice sites (that is, two sites in succession), an initially localized particle
can become delocalized. Its mean-square displacement at long times is shown to grow in time as 132
provided that —2V < ¢, — e, < 2V. Diffusion occurs if €, — e, =+ 2V and localization otherwise. The
dual of the random-dimer model is also shown to exhibit an absence of localization and is shown to be
relevant to transmission resonances in Fibonacci lattices.

PACS numbers: 71.50.+t, 72.15.Rn

The Anderson model for site-diagonal disorder has
proven to be of fundamental importance in our under-
standing of the role disorder plays in insulator-metal
transitions in a wide range of materials, most notably
Si:P."2 A well-known result of the Anderson model for
site-energy disorder is the vanishing of the diffusion con-
stant of an initially localized particle for any amount of
disorder in one and two dimensions. In this paper, we
consider probably the simplest tight-binding model that
exhibits Anderson localization. We focus on a one-
dimensional tight-binding model of a random binary al-
loy in which the site energies ¢, and €, are assigned at
random to the lattice sites with probability ¢ and 1 —gq,
respectively. A constant nearest-neighbor matrix ele-
ment ¥ mediates transport between the lattice sites. In
one dimension, it is well accepted that for all nonzero g,
all the eigenstates will be exponentially localized and no
long-range transport will be observed at long times.*

Consider, for the moment, a particular realization of
the site energies in a certain segment of the infinite lat-
tiCe: .. .€,€4€p€a€4€EELERELELELELEYE,. . .. Given the
rigorous nature of the theorems establishing quasiparti-
cle localization in one-dimension, it seems safe to assume
that the one-dimensional results are not only indepen-
dent of g, but also of the number of ¢,’s or ¢,’s that ap-
pear in clusters in the lattice. That is, the localization of
one-dimensional quasiparticles still persists if all clusters
containing an odd number of ¢,’s are replaced by clus-
ters containing an odd number of ¢,’s, for example.
After all, under such a transformation, the system is still
random and the localization theorems guarantee an ab-
sence of transport for any degree of randomness in one
dimension. We show here that this is not the case. In
particular, we show that when one of the site energies is
assigned at random to pairs of lattice sites (that is, two
sites in succession), VN of the electronic states are ex-
tended over the entire sample. In addition, we show that
the tight-binding model that describes this system is
equivalent to a simplified version of the correlated disor-
der model recently proposed by Dunlap, Kundu, and
Phillips (DKP).* We refer to a lattice in which at least
one of the site energies is assigned at random to pairs of

lattice sites as the random-dimer model. We show by
numerical simulation that the mean-square displacement
of an initially localized particle in the random-dimer
model will grow as 7*? provided that —2V <e, —ep
< 2V. Diffusion is shown to occur when ¢, — €, = % 2V.
In all other cases, the particle remains localized at long
times. Our results are shown to be valid even when both
€, and ¢, are individually assigned at random to pairs of
lattice sites. This case is certainly more surprising than
the former because it seems reasonable to assume that
such a system is equivalent to the completely random
binary alloy with two sites per unit cell. Here again, we
show that this is not the case. We close by showing how
an absence of localization can occur in a random two im-
purity model even when the pairing constraint is relaxed.
The connection between such a model and transport in
Fibonacci lattices’ is discussed. This work certainly sug-
gests that a number of physically relevant models might
exist that exhibit an absence of localization.

To determine the dynamics of an electron in the
random-dimer model (RDM), we numerically integrated
the equations of motion,

ié"=6nCn+V(Cn+]+Cn—]), (1)

for the site amplitudes C,(¢) and calculated the mean-
square displacement,

mr=3m?|Cpnl*. )

Our calculations were performed on a self-expanding
chain with the localized initial condition Co(r=0)=1.
The self-expanding chain was used to minimize end
effects; whenever the probability of finding the particle at
the ends of the chain exceeded 10 ™%, ten new sites were
added to each end. The results from several random
samples are shown in Fig. 1. The site energies were
chosen from the bivalued distribution ¢, =¢, and ¢, =¢,
with ¢=1%. This choice of g corresponds to the most
disordered case. Figure 1 compares the mean-square
displacement in the random-dimer model for three
different values of €, —¢€p: (a) €,—€e, =V, (b) €,— €
=2V, and (c) €, —¢€, =3V. The dotted curves are the
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FIG. 1. The mean-square displacement divided by (V)32
for varying amounts of disorder in the random-dimer model:
@) ea—e=V, (b) ea—€, =2V, and (c) e, —e, =3V. The
mean-square displacement grows as ¢ %2 in case (a), linearly as
tin (b), and is bounded for (c).
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data from single numerical simulations, whereas least-
squares fits of the data with an expression of the form
mZ=AV1)® are represented by solid lines. The con-
stant 4 was allowed to vary, while the exponent b was
set to 7, 1, and O for the cases (a), (b), and (c), respec-
tively. The subsequent straight-line fit through the data
in each of these cases indicates that the transport proper-
ties are as advertised, namely, superdiffusive for
—2V <e€,—€p <2V, diffusive for €, — €, =2V, and
localized otherwise. We emphasize that we have con-
sidered the most disordered case, ¢ = 1. Hence, the re-
sults reported here could only be enhanced as the disor-
der is decreased.

Probably the simplest way to understand our results is
to consider an otherwise ordered lattice with a single di-
mer defect. Let us place the dimer on sites 0 and 1. We
assign the energy ¢, to all the sites except sites 0 and 1.
Let the energy of sites 0 and 1 be ¢,. A constant
nearest-neighbor matrix element ¥ mediates transport
between the sites. We first show that VN of the elec-
tronic states are unscattered by the dimer impurity.
Then, we construct explicitly the unscattered states in a
lattice containing randomly placed dimers. To proceed
we calculate the reflection and transmission coefficients
through the dimer impurity. Let us write the site ampli-
tudes as C, =e*"+Re ~*" for n< —1 and C,=Te*"
for n=1, where R and T are the reflection and
transmission amplitudes, respectively. From the eigen-
value equation for sites —1 and 1, it follows that Cq
=14+R=T(e—e *+V)/V with e- =¢, —¢,. Substitu-
tion of this result into the eigenvalue equation for site 0

(b)

results in the following closed expression:

|R|2= €2 (e-+2Vcosk)? G)
€2 (e-+2Vcosk)?+4V*sin’k

for the reflection probability. The reflection coefficient
vanishes then when €, —€, = —2V cosk or equivalently
when —2V < ¢, — €, <2V. We point out that when this
condition holds, or equivalently when E(k)=¢;, the
product of a pair of b transfer matrices yields the unit
matrix. Under such conditions, Furstenberg’s theorem
implies that the electronic state at that energy will be ex-
tended.® The location in the parent-ordered band of the
perfectly transmitted electronic state corresponds to the
wave vector ko=cos '[(e, —€,)/2V]. Of course, no
transport would occur if only a single electronic state
remained unscattered. To determine the total number of
states that behave in this fashion, we expand R around
ko. To lowest order we find that in the vicinity of ko,
| R|*~(Ak)? where Ak =k —ko. Consider now a crys-
tal containing a certain fraction of randomly placed di-
mer impurities. Electronic states in the vicinity of kg
will be reflected with a probability proportional to (Ak)?2.
The time between scattering events 7 is inversely propor-
tional to the reflection probability.” As a result, in the
random system, the mean free path A =(v)t~1/(Ak)?in
the vicinity of ko, where v is the velocity.7 Let Ak
=AN/2zN. Upon equating the mean free path to the
length of the system (/V), we find that the total number
(AN) of states whose mean free path is equal to the sys-
tem size scales as AN =+/N. Because the mean free
path is approximately equal to the localization length in
one dimension, we find that the total number of states
whose localization lengths diverge is vVN. Consequently,
in the random-dimer model VN of the electronic states
remain extended over the total length of the sample.
Such states move through the crystal ballistically with a
constant group velocity [v(k)] except when they are lo-
cated at the bottom or the top of the band where the ve-
locity vanishes. Because all the other electronic states
are localized, the diffusion constant is determined simply
by integrating v(k)A(k) over the width of k states that
participate in the transport. The upper limit of the in-
tegration is then proportional to the total fraction of un-
scattered states or 1/v/N and A(k)~N. In the case
when the velocity is a nonzero constant, we obtain that
D~~/N. Because the states which contribute to trans-
port traverse the length of the system with a constant ve-
locity, ¢t and N can be interchanged or D~1'2. Conse-
quently, the mean-square displacement grows as 2. At
the bottom or the top of the band where the group veloc-
ity vanishes, v(k) ~k and D~1.

We now construct explicitly the unscattered states. In
absence of any dimer impurities, the eigenstates are sim-
ply Bloch states of the form e*”. When the dimer im-
purities are present because the eigenstates in the vicini-
ty of ko have unit transmission, it must be the case that
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these states are still of the Bloch form. These states can
be constructed as follows: Consider the single-dimer im-
purity case discussed earlier. The dimer impurity is lo-
cated on sites 0 and 1. The unscattered state must be of
the form e*” for n <0 and e*"*® for n=1. That is,
the only difference between the electron wave function
before and after it has interacted with the impurity is
that its phase changes by ©. There is no reflected com-
ponent. To determine Q, we consider the eigenvalue
equation E —¢e, =V(e**%+¢ ") for site 0. This
equation has a trivial solution when €, =¢€, or equi-
valently in the limit of an ordered system. In this case
Q =0. The nontrivial solution occurs when E — ¢, =0.
Recall that when E —e¢, =0, the reflection coefficient
vanishes and the product of two b-type transfer matrices
yields the unit matrix. Because E is the energy of the or-
dered band, ¢, + 2V cosk, the vanishing of E — ¢, =0 cor-
responds to the condition —2V =< ¢, —¢, <2V. In this
case, O = —2k+ . Consequently, the Bloch state that
satisfies the Schrodinger equation is e’*” for n <0 and
—e*U1=2 for n> | provided that —2V < ¢, — €, < 2V.
The wave function on the second atom of the dimer is
the negative of the a-type atom located on site —1. The
unscattered state then is odd with respect to reflection
around the first atom of the dimer. If another dimer
were located on sites 2 and 3, the corresponding perfectly
transmitted wave would be ...e “¥k e | —e Tk
—1, e % 1, e* e .. . provided, of course, that
—2V <e€,— €, <2V. Such states can always be con-
structed regardless of the number of dimer impurities
that are placed at random in the lattice. Although the
phase changes as the electron scatters from a dimer im-
purity, there is no reflection for VN of the electronic
states. It is straightforward to verify that similar states
cannot be constructed for single impurities in the ab-
sence of off-diagonal disorder. We show in Fig. 2 a
graph of the real part of a perfectly transmitted electron-
ic state at a particular value of k as a function of the
concentration of dimers. As is evident, the electronic
state is extended although “‘scattering’ occurs at each di-
mer. This is the principal result of this paper.

The only remaining question in the RDM is the exact
location of the set of perfectly transmitted electronic
states in the energy band of the disordered system. To
answer this question we consider the correlated disorder
model of DKP. The essence of the DKP model is that
any system described by a tight-binding Hamiltonian of
the form

H=anal’|ran+zVu;n,n+p(a;an+p+a;+pan) (4)
n n.u

will exhibit superdiffusive transport if the site energies
and transfer-matrix elements can be written as

€n =Z(Gu;n,n+y+Gy;n‘n—p) (5)
u

and

Vu:n.n +u= (sz +G;12;n,n +u 2Gu.nn +uVu CQSO;:) 172 , (6)
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FIG. 2. The real part of the unscattered eigenstate in the
random-dimer model. p is the concentration of dimers. The
wave function moves through the crystal with a phase that is
randomized at each dimer impurity. No backscattering occurs,
however, when —2V <¢, — ¢, <2V.

respectively. In Eqgs. (4)-(6), a;} creates an electron at a
site with direct lattice vector n, u is a positive unit vector
originating at n pointing to the nearest-neighbor sites
along the uth direction of the crystal, V, is the bare
bandwidth along the puth direction, and G pn+, is a
random-bond variable connecting sites n and n* u. In
the context of structurally induced disorder, G,.pn+,
was shown to be some function (linear or otherwise) of
the relative displacement between ions located at n and
n* u. It was shown that if Egs. (5) and (6) apply, an
unscattered state will exist with wave vector k =0 in the
parent-ordered band.* The total fraction of states in the
vicinity of k=86 that remains unscattered scales as
1//N.* To apply this model to the problem at hand, we
note that the site energies in the random-dimer model
can be constructed from a constrained bivalued distribu-
tion of G’s—that is, from a distribution of the form
Gpn+1=G, and G, ,+ =G, with probabilities P and
1 — P, respectively. Because the site energies are of the
form €, =Gy n+1+Gn -1, the constraint that must be
imposed is that G,, for example, cannot occur consecu-
tively in the lattice. The resultant site energies will be
€.=2G, and ¢, =G,+G, with the ¢’s occurring in
pairs. The matrix elements that are generated by G, and
Gy must, of course, be equal in the RDM. Solving the
two simultaneous equations that result from Eq. (6) for
the cosf term, makes the matrix elements equal yields
the general condition for the location of the unscattered
state,
1—3¢q

2lV/W)2(1+¢q)2—2¢q(1 —¢)1'?”°

@)

cosf=
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where g is the concentration of €,. The location of the
unscattered state is then a function of the concentration
as well as the relative disorder V/W with W=¢, —¢,.
Substitution of the restriction —1=<cosé=<1 into (7)
yields the general result that —1 < W/2V <1 for an un-
scattered state to exist. We note that when ¢, — ¢
=12V, cos6@= * 1 regardless of the concentration gq.
In this case, the unscattered states have zero velocity and
diffusion occurs. For all other values of W, provided that
—1=< W/2V =<1, the location of the unscattered states
depends on ¢ and will have a nonzero velocity.

We note in closing that it is possible for the absence of
localization to persist even when the pairing constraint is
relaxed. Consider a lattice containing two types of im-
purities with energies ¢, and ¢, with the constraint that
the b-type impurities do not occur on neighboring lattice
sites. Let ¥V, be the nearest-neighbor matrix element
connecting two sites with energy ¢, and V), the overlap of
two sites with energy ¢, and ¢,. In such a lattice, the
Vi-type matrix elements occur in pairs and hence this
model is the dual of the random-dimer model. It is
straightforward to show that in this model the reflection
coefficient through a single b impurity will vanish provid-
ed that V,|e,—ep| <2|VZ2 —V#|. Using arguments
analogous to those used in the RDM, we find also that
VN of the electronic states are extended when this con-
dition holds. The phases of the unscattered states in this
model, however, do not change. The amplitude changes
by the ratio ¥,/V, when an impurity is encountered. For
example, if b-type impurities are located on sites — 1 and
2, the unscattered eigenstate is ... e ~ 2K (V,/Vy)e ~k
1, e’*, (V,/Vy)e®* e .. .. The arrangement of the
layers in Fibonacci lattices> fabricated from two types of
materials (such as GaAs and AlAs) is a subclass of the
disorder inherent in the single-impurity model described
above. In such systems transmission resonances should
be observed at particular energies when the criterion de-
scribed above holds. In a forthcoming paper,® we discuss
in detail the relationship between such quasiperiodic sys-
tems and the single-impurity model.

We have presented some simple models which possess
surprising localization-delocalization transitions. Trans-
port in these models occurs because v/N of the electronic
states are extended over the whole sample. Any physical
system that can be described either by the RDM or the
single-impurity model (such as Fibonacci lattices) should
exhibit transmission resonances and a drastic enhance-
ment in its conductivity when the Fermi level coincides

with the position of the unscattered states. Hence, these
models could be used to guide the synthesis of new high-
ly conductive materials. As we have discussed earlier,*
the standard localization theorems'™® are completely
consistent with the occurrence of a set of delocalized
states of zero measure. Such states do not affect the
vanishing of the imaginary part of the self-energy along
the ReE axis, for example. What is surprising here is
that they are of sufficient number VN to give rise to
transport. Pendry® has shown that in standard disor-
dered models, isolated states at particular energies
remain extended over VN of the lattice sites. However,
the number of states which behave in this fashion is ex-
ponentially small.’ As a result, such states do not affect
the asymptotic value of the mean-square displacement of
an initially localized particle, in contrast to the extended
states in the RDM. 1t is straightforward to verify that in
higher dimensions, an absence of localization still per-
sists. Although the precise time dependence of the
mean-square displacement is not known, we are
guaranteed that it is at least 7 /2,
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Note added.— While this work was in progress a pa-
per appeared by Flores'? showing similar results for the
dilute binary alloy.
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