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We examine the classical diffusion of independent adatoms on periodic substrates using a recently
developed microscopic theory. We show how the universal properties of surface diffusion arise from this
theory in the high-friction limit at low temperatures. At high temperatures, the theory crosses over
correctly to that of a Brownian particle in a viscous medium.
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In the study of adatom diffusion on a substrate, the
temperature dependence and the anisotropy of diffusion
are two of the most important issues.! The Arrhenius
form of activated temperature dependence is almost
universally used in the interpretation of experimental
data.? For the anisotropy of the diffusion tensor, the
simple geometric random-walk model is often evoked.?
To date, most of the theoretical studies of these questions
are based on molecular-dynamics simulations.®® A
highly successful approach to the numerical study of sur-
face diffusion is through the concept of dynamical
corrections to the transition-state theory (TST).*7 It
has been shown that at low temperatures, the correction
to TST is small.* The TST picture of diffusion corre-
sponds to a series of independent activated jumps across
the saddle-point barrier. Thus, these studies provide a
justification for the phenomenological assumptions of
temperature dependence and anisotropy of the diffusion
constant. As the temperature increases, trajectories not
included within TST become important and one expects
deviations from the simple random-walk picture.* How-
ever, how this influences the diffusion anisotropies has
not yet been investigated to our knowledge. There is also
no simple theory which describes correctly the crossover
from the low-temperature activated jump regime to the
high-temperature Brownian motion regime.

Recently, an analytic theory to the diffusive motion of
an atom interacting with an inhomogenous background
has been developed by Ying.® In this approach, the
time-dependent correlation functions are expressed as a
continued-fraction expansion. In particular, the dif-
fusion tensor D of an adatom can be obtained as the
zero-frequency limit of the velocity autocorrelation func-
tion. The result for D takes a very transparent form in
the high-friction limit. There is no reference to TST tra-
jectories in this approach, and the result is valid at all
temperatures. It is the purpose of this Letter to show
how the universal properties of surface diffusion arise
from this theory at low temperatures, and how the be-
havior crosses over smoothly to a free-particle Brownian
motion at high temperatures. We will also show how the
diffusion anisotropy depends on the topology of the sur-
face potential.

The existing theory is formulated for extended motion
of an adatom in all dimensions. When applied to surface
kinetics, the motion of an adatom has to be treated as
strictly two dimensional. For a more realistic treatment,
we have generalized the theory to the case where the
motion of the adatom is extended in the surface plane
and bounded in the normal direction.” Within the Mori
formalism developed in Ref. 8, this involves using the
set of plane waves {¢‘C'"}, with G denoting the two-
dimensional reciprocal-lattice vectors to describe the po-
sition dependence within the surface plane, and the set of
normalized harmonic-oscillator eigenfunctions {¢,(z)}
for describing position dependence involving the normal
coordinate.

Using this theory, the components of the diffusion ten-
sor D in the high-friction limit can be obtained as the in-
verse of an infinite matrix Q given by’

Q. (w;s,8)= —iwpmy ' (s,5')5,,
+3,.(w;s,s') — iG‘,x ~I(s,s)G,. (1)

Here o is the frequency, u and v refer to Cartesian coor-
dinates, and s=(G,n) is the combined label for the rows
and columns in the matrix. The two fundamental ma-
trices in (1) are

26,80 = [ ¢ €= 9, ()9, (In(r, 2 )drdz
and
Z,(w;s,s') =fe ~iG=G)ry ()¢, (z)
xn " (r,2)n, w;1,z)drdz .

These are generalized transforms involving the density
n(r,z) of the adatom and the frequency-dependent fric-
tion tensor 7,,(w;r,z). The density can be expressed in
terms of the adiabatic potential V,(r,z) as n(r,z)
—1_ —BV4(r,z2) . — —BV,4(r,2) .
=Z e , with Z=[e drdz. Detailed
forms for V,4(r,z) and n,.(w;r,z) are given in Ref. 8.
Both of these quantities have a weak temperature depen-
dence arising from the Debye-Waller factor correction to
the interaction potential of the adatom with the sub-
strate.'® In this Letter, we shall neglect this source of
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temperature dependence for the clarity of discussion. !
We now first consider the solution of the diffusion ten-
sor for a square lattice. Under normal conditions in the
study of surface diffusion, the motion of the adatom per-
pendicular to the surface involves only small-amplitude
oscillations. Thus, for each position r on the surface, we
can expand the potential V,(r,z) around the local
minimum zo(r) as V4(rz) =V (t)+Cl1+V,(1)]

2 o —y?
Dy = a kﬂTZ—'fdyf+ due

m = Vr
where a is the linear dimension of the unit cell over
which x and y are integrated. For a square lattice, Dy,
=D, by the symmetry of the integrand in Eq. (2). The
normal coordinate in (2) has been transformed from z to
uEﬂC[Z—Zo(l')].

This remarkably simple analytic result allows us to ex-
amine the temperature dependence of D without any as-
sumptions about the potentials. First, at low tempera-
tures it is easy to see that the integral in (2) is dominat-
ed by a contribution from the saddle-point region of
V(r), whereas the contribution to Z is mainly from the
minimum of V,(r). Thus, the diffusion coefficient takes
the form D=Dge ~P4, with A being the difference be-
tween the saddle point and minimum of ¥(r). The pre-
factor Do has only a weak power-law dependence on
temperature. To our knowledge, this is the first time
that such an Arrhenius form has been derived analytical-
ly starting from a microscopic Hamiltonian.

From (2), we can see that the Arrhenius form only
holds in the limit BA>>1. As the temperature becomes
comparable with the diffusion barrier, considerable devi-
ations should occur. In the extreme high-temperature
limit BA— 0, the barrier plays no role in diffusion and
we recover from (2) the correct high-temperature behav-
ior for the diffusion constant

DSkBT/MT]', (3)

where 1’ is a renormalized friction. This is of the same
form as diffusion of a free Brownian particle in a uni-
form viscous medium. This kind of continuous crossover
from the Arrhenius behavior at low temperatures to
unactivated diffusion at high temperatures has been ob-
served experimentally'? as well as in molecular-dynamics
simulations.® In the high-temperature limit BA< 1, the
periodicity of the substrate becomes irrelevant. Thus,
motion of the particle becomes Brownian type and very
different from that associated with the TST trajectories.
This gives rise to the deviations from the activated be-
havior and the eventual linear temperature dependence
of D.

Next, we will focus on the important question of
diffusion anisotropy. For this purpose, we have calculat-
ed D for lattices of other symmetries. For simplicity, we

880

14 14 2
[fdxeﬂ 10, Va(ou n(w=0;r,u) ,

X [z —2zo(r)]% Here V,(r) and V,(r) are periodic func-
tions of r with the latter defined such that it contains
only nonzero Fourier components. Following now the
procedures outlined in Ref. 8, we can invert the matrix Q
analytically in the limit @ — 0 to obtain the diffusion
tensor

D, = limOQ;V'(w;G =0,G'=0,n=0,n"=0) .
The element D,, is given as

=1

(2)

shall henceforth set ¥,(r) =0. The vertical motion then
becomes decoupled from the diffusive motion within the
plane, and need not be taken explicitly into account.
This obviously does not influence the qualitative features
of diffusion anisotropy.'*> We choose an effective poten-
tial as V4(r) =V(cosG,  r+cosG, r), with G, =(cosb,
sinf)Go, G, =(—cos0,5in0) Gy, and Go=r/(a cosOsind).
Here a is the separation between nearest-neighbor
atoms. A choice of 8 =r/4 would correspond to a square
lattice. Here we choose 68 =cot _'\/Z which corresponds
to the W(110) surface, with a centered rectangular geo-
metry. The classical saddle points here are located on
the short bridge sites between atoms.® Our choice of x
and y axes corresponds to the principal axes of diffusion
so that D,, =D, =0. The diagonal elements of the fric-
tion tensor were chosen to be 7. =n,, =1, while the
off-diagonal elements were set to zero. To evaluate D,
and D,,, we invert the matrix Q in (1) numerically. The
number of G vectors kept is determined by the conver-
gence of the inversion. A total of 335 G vectors were

needed for the lowest temperatures studied.

In Fig. 1(a) we display our results. The approach to-
wards the Arrhenius form is qualitatively the same as de-
scribed above for the square-lattice case. The Arrhenius
form sets in at about BA~35 with the activation energy
exactly equal to the saddle-point barrier A. At higher
temperatures a significant deviation occurs because of
the crossover to the Brownian behavior, Eq. (3). In ad-
dition, at and below temperatures of A~ 10, the aniso-
tropy ratio D,,/D, tends towards a universal geometric
value cot?0=2 for this surface independent of the details
of the potential V,(r). This is precisely the result ob-
tained assuming single random-walk jumps between unit
cells via the saddle points.® However, we note that this
geometric value is only reached at temperatures well into
the activated regime. This is because the anisotropy ra-
tio is sensitive to finite-temperature corrections to both
the prefactor and the barrier.

To verify the universal character of these considera-
tions we have also done calculations for another rhom-
boidal lattice, with @=nx/6. The results are shown in
Fig. 1(b). Transitions from the low-temperature activat-
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FIG. 1. (a) Dy« (lower solid curve) and D,, (upper solid

curve) vs BA for a centered rectangular lattice on a semiloga-
rithmic scale. The results are model dependent only at inter-
mediate temperatures (see Refs. 9 and 14). (b) Corresponding
results for a rhomboidal lattice with 8 =x/6.

ed regime to the high-temperature Brownian limit arise
in a fashion very similar to the centered rectangular lat-
tice. The anisotropy ratio D,,/D.. now tends to the
universal geometric value cot?’6=3 for this surface.
Again, this ratio is only reached well into the activated
regime.

Finally, we investigate diffusion on a surface with
different saddle points. We choose here a simple rec-
tangular lattice. Using a potential

Va(r) =Vocos(2nx/ax)+Vycos2ny/a,) ,
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FIG. 2. Dy, (upper curve) and D,, (lower curve) for a sim-
ple rectangular lattice. Both components cross over to an Ar-

rhenius form corresponding to the barriers A, and A, =2A,.
Again, the high-temperature limit is given by Eq. (3).

with Vo=V, creates different barriers A, and A, along
the x and y directions, respectively. In Fig. 2 we show
results of calculations for A, =2A,. The friction-tensor
components were set as above, and 335 G vectors were
needed for the lowest temperatures studied. Both D,y
and D,, again tend to the Arrhenius behavior at low
temperatures, but each with a different slope correspond-
ing to the two distinct barriers. Consequently, the ratio
D,, /Dy, tends to zero exponentially fast, with the lower
barrier eventually dominating diffusion at low tempera-
tures.

In summary, we have demonstrated how the universal
behavior of surface diffusion, in particular, the Arrhenius
form of temperature dependence and the geometric an-
isotropy ratio, arise from our microscopic theory in the
high-friction limit at low temperatures. Because the
theory assumes no particular jump trajectories, we can
follow deviations from the universal behavior as temper-
ature increases. Eventually, the theory crosses over
correctly to the behavior of a free Brownian particle.
The details of this crossover depend on the form of the
interaction potentials, but for most cases the results
should be very similar to what we have presented here. !4
We can go beyond the high-friction limit discussed in
this Letter by truncating the continued fraction for the
velocity autocorrelation function at a higher level.® The
inclusion of higher-order terms is expected to influence
the details of the crossover behavior in temperature
dependence and a renormalization of the friction, but we
believe that the important low-temperature properties,
such as the Arrhenius form and the geometric anisotropy
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ratio, should remain intact.
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