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Mixtures of polyisoprene and poly(ethylene-propylene) have been studied using time-resolved elastic
light scattering. For off-critical quenches just into the two-phase coexistence region, highly mono-
disperse spheres are observed, whose radii grow with a power law R(t) =Rot /2. The monodispersity and
growth law are explained as a heterogeneous nucleation process with a simple model equation for the
growth of isolated spheres, and allow the study of the kinetics of domain growth for metastable thermo-

dynamic processes in unprecedented detail.

PACS numbers: 61.25.Hq, 05.70.Fh, 64.60.Qb, 64.75.+¢g

The behavior of binary systems which may phase
separate has been a paradigm for both the theoretical
and experimental study of phase transitions and critical
phenomena for many years. Polymer blends have recent-
ly emerged as a particularly useful subclass of such sys-
tems insofar as the dynamics of phase separation can be
investigated on time scales easily accessible in the labo-
ratory. Low-molecular-weight systems, such a lutidine
water and isobutyric acid water, rely on critical slowing
down to render their time-dependent behavior measur-
able in a quench experiment.'? In this Letter, we report
the observation of a novel phase-separation phenomenon
in a blend of polyisoprene (PI) and poly(ethylene-
propylene) (PEP) with molecular weights of 2000 and
5000, respectively. This system has an upper critical
solution temperature phase diagram with a critical tem-
perature T, =38°C, and critical composition ¢.=0.605
volume fraction PI. This intermediate-molecular-weight
system allows temperature quenches 0.05<SAT<5°C
below the binodal into the metastable or unstable regions
of the phase diagram, bridging results obtained with sim-
ple fluid systems"? (AT <0.01 °C) and recent work with
high-molecular-weight polymers®* (AT 2 2°C).

For sufficiently shallow off-critical quenches, AT in the
range 0.15-1.06°C, we observe the nucleation of spheri-
cal droplets of the minority phase. We have determined
that for times of order 102-10* s, the spheres are highly
monodisperse (pol)'dispersity <S3%), and the radius
grows as R(t) ~t "2, The observation of this growth law
is entirely new for phase-separating quenched binary sys-
tems. For significantly longer times, the polydispersity
increases, while for deeper quenches, the separating
phases enjoy a distinctly different morphology, akin to
the bicontinuous percolated phases encountered in spino-
dal decomposition.

Elastically scattered laser light 7(g) was measured
with a 14-bit 512x512 charge-coupled device. The typi-
cal measuring time for 7(g) over momentum transfer

2000S5¢<75000 cm ™! is 1 s or less. Azimuthal
averaging in g space resulted in an effective dynamic
range of five decades in intensity. The temperature-
control system, which will be described elsewhere, pro-
vided 20-mK stability at both the prequench and post-
quench temperatures, with quench times on the order of
30s.

The large viscosity of the polymer mixtures prevents
macroscopic phase separation on laboratory time scales.
It is thus not practical to measure the coexistence curve
directly by allowing complete separation. Instead we es-
timated the coexistence curve shown in Fig. 1 by slowly
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FIG. 1. Phase diagram for polyisoprene-poly(ethylene-

propylene) system used to study phase-separation dynamics of
off-critical quenches. The results communicated in this paper
are for the sample at ¢p; =0.48. The dashed and dotted curves
are the spinodal and binodal curves, respectively, for a best-fit
Flory-Huggins free-energy-density calculation. The data are
the experimentally measured phase-separation thresholds for a
variety of different concentrations.
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cooling the samples until they were observed to scatter
strongly in the forward direction. The dashed and dotted
curves represent the spinodal and coexistence curves, re-
spectively, for a best-fit free-energy density of the Flory-
Huggins form:>

=0 L e(i—s). (1)

(6) = glng (1—¢)In(1
A Npy Npgp

Np;=29 and Npgp=73 are the known polymerization
indices of the two species and y =a/T +b is the Flory in-
teraction parameter,® wherein @ =51.9 and b= —0.12
are fitting parameters, determining 7, and the width
of the coexistence curve. Note that ¢.=~/Npgp/
(\/Npi+~/Npgp) is not a fitting parameter.® Inside the
spinodal, infinitesimal concentration fluctuations will
grow exponentially,” and the system is said to be unsta-
ble. In the region between the spinodal and the coex-
istence curves the system is metastable because although
small-amplitude concentration fluctuations decay, large
enough ones will grow. The phase-separation processes
in these regions are termed spinodal decomposition and
nucleation and growth, respectively.

Here we are primarily concerned with the phase-
separation dynamics for quenches to various depths at
the off-critical concentration ¢ =0.48. Figure 2 is a
semilogarithmic plot of I(g) 8000 s after a quench
0.64°C below the coexistence curve at this composition.
The data, represented by the open circles, are charac-
teristic for sufficiently shallow quenches into the coex-
istence region with 0.15<AT =<1.06°C. They have
been multiplied by a factor of 2 to displace them from
the model curves for clarity. The dash-dotted curve is a
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FIG. 2. I(g) for scattering from a nearly monodisperse dis-
tribution of spheres. The open circles are data and the curves
are a model calculation from spheres with Gaussian-distributed
radii, with polydispersity (=o/u) 0%, 3%, 7%, and 12%. To
model successfully the high-order resonances, one is limited to
polydispersity on the order of 3%.
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two-parameter fit to the data of a model calculation in
the first Born approximation of the form factor for
dielectric spheres8 with Gaussian-distributed radii, and
no coherent effects between spheres. The half-width of
the distribution is 3% of the peak position. The two
fitting parameters are the mean of the radius distribution
(3.16 um for the case shown) and the intensity prefactor
of the function (in arbitrary units). The other curves are
plots of the model function for half-widths 0%, 7%, and
12% of the same mean radius, and with the same intensi-
ty. The model curves show that if the fourth- and fifth-
order resonances are not to be washed out by polydisper-
sity, the half-width of the radius distribution is limited to
around 3% of the mean. We attribute the failure of the
3% curve to correctly account for the low-g node depths
to multiple scattering from the relatively bright low-
order resonances or to forward scattering from unavoid-
able dust particles.

The scattered intensity can be written as I(g)
=P(q)S(g), where P(q) is the form factor of the indivi-
dual scatterer and S(g) is the structure factor of the
scatterers. Deviations in the near-forward direction in
Fig. 2 are consistent with either a suppressed S(g) due
to coherent effects between spheres, or the modification
of P(g) due to the existence of a concentration depletion
zone around the spheres. Using an optical microscope,
we were able to determine the spacing between droplets,
which varies in the range 20-200 um. One gets the dis-
tinct impression of random placement of these spherical
domains of minority phase, suggesting an S(g) near unit
for all measurable g. We thus tend to attribute the devi-
ations between I(g) and the calculations to the depletion
zone.

Figure 3 is a logarithmic plot of the time dependence
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FIG. 3. Logarithmic plot of the mean sphere radius as a
function of time for several quench depths in the range
0.15-1.06°C. A line of slope 3 is shown for comparison.
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of the radius of the spheres for several quenches at
¢=0.48. A line with slope % is plotted for comparison.
Though it is evident that a 7' law is approximately
obeyed throughout, there may be a gradual crossover
from a slightly larger to a slightly smaller exponent. For
quenches slightly deeper than the deepest shown in Fig. 3
(1.06°C), there is an abrupt change in behavior. In the
very earliest times the spherical form factor can be mea-
sured, but it is quickly overwhelmed by the characteristic
ring which brightens and shrinks in radius with time ac-
cording to the ' law expected for Lifshitz-Slyozov
(LS) coarsening® and spinodal decomposition.'® Under
the optical microscope, we also initially observe the for-
mation of droplets. After a short time, however, the su-
persaturated sea surrounding the droplets develops an in-
stability in the concentration field and a morphology
reminiscent of that of spinodal decomposition develops.
This happens when we observe a spinodal ring form in
the scattered light signal. This quench depth is a factor
of 3 shallower than the position of the classical spinodal
as calculated in the best-fit Flory-Huggins free-energy
density for this concentration (see Fig. 1). It is notable
that the sample does not become cloudy to the naked eye
for quenches shallower than this, even when allowed to
sit for several days. We conclude that this is the cloud
point, and that to observe nucleation and growth unfet-
tered by more complicated phenomena, one must limit
the quench depth to avoid this region. Other investiga-
tors, by contrast, have only observed the dynamics below
the cloud point because they have required the higher
scattering signals encountered there to make measure-
ments.!! These observations confirm the recent emphasis
by Hayward, Heermann, and Binder'? that spinodal
decomposition behavior is to be observed at significantly
smaller initial supersaturation than represented by the
classical spinodal.

A rate equation for the radius of an isolated droplet in
a sea of supersaturated phase can be derived by solving
the diffusion equation with the appropriate spherical

boundary conditions: '3
dR _ D a
_— —_— s 2
dT R R )

where R is the sphere radius, D is the diffusion coef-
ficient, A is the relative supersaturation, and a is the
capillary length. Clearly if R < R* =a/A, then the radi-
al rate of growth is negative, and the droplet evaporates,
whereas for R > R*, the droplet is viable and will grow.
Equation (2) can be rewritten in terms of reduced
variables p and 7 defined as follows:
=R _A
P R* 2
Provided the system-dependent parameters, such as D
and a, do not vary appreciably over the range of temper-
atures sampled, a simple rescaling of the axes in Fig. 3

R, 1=k ©)
a

should bring all the quench data onto a single curve.
Figure 4 is a replot of the data in Fig. 3 with the time
axis rescaled by @?/DA* and the radius axis rescaled by
R*. The supersaturation A was calculated using the
quench temperatures. For this system, D=9x10""!
cm?/s, as measured by dynamic light scattering outside
the coexistence curve.'* R*, hence a, were calculated
using a theory of Binder,'> and estimates for the interfa-
cial tension were according to Joanny and Leibler.'® a is
approximately 20 A, which is § of the correlation
length, as expected.'>!” The solid curves represent in-
tegrations of the dimensionless version of (2) for initial
data scattered on the interval p € (1,5] at 7=10. A is
held constant for these trajectories, consistent with the
hypothesis that the droplets are noninteracting. There
are no adjustable parameters in this fit. The remarkable
feature is that an initially polydispersive droplet distribu-
tion has developed into a sharp distribution when the
earliest measured reduced time is reached. The lack of
data points for 7 < 80 in Fig. 4 is not accidental. We did
indeed measure I(q) for the AT=0.15°C quench at
times ¢ < 6000 s. The minima for these 7(g) are, howev-
er, washed out to a point where the average sphere ra-
dius cannot be determined, consistent with a polydisper-
sity greater than 12%. The late-time deviation may be
attributable to the slowing of the growth as the supersa-
turation decreases.

The intensity of forward-scattered radiation from a
dielectric sphere scales as the square of its volume.® For
the total scattering from a collection of such spheres, we
have then I(g=0)~nRS, where n is the number density
of the spheres. Our intensity data are well fitted with the
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FIG. 4. Plot of data in Fig. 3 with the time axis rescaled by
a@?/DA* and the radius axis rescaled by R*. The model curves
are numerically integrated solutions of (2) for various initial
conditions, showing that the monodispersity is a natural conse-
quence of free growth of nucleated droplets once the nucleation
has stopped.
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sixth power of the radius, indicating that the number
density remains constant for =2 100. This situation de-
viates from that described in the homogeneous nu-
cleation theory of Langer and Schwartz!” in that the nu-
cleation rate drops to near zero after some early time, in-
dependently of the quench depth. These observations are
consistent with a heterogeneous nucleation picture in
which there is a fixed number of sites that are preferen-
tially wetted by the minority phase. We expect that at
late time (months with these fluids) there would be
crossover to LS coarsening with its attendant onset of a
polydisperse droplet radius distribution and the 7'/
growth law. For the 0.15°C and 0.40°C quenches, the
long-time limit of the data sets shown in Fig. 3 were
determined when the polydispersity became sufficiently
high that an average radius could not be reliably inferred
from the I(g). Whether the change in polydispersity is
due to the LS process or some other interacting droplet
effect, we have yet to determine with further experi-
ments.

To conclude, we have identified a region of the phase
diagram with qualitatively novel scattering intensity,
I(g). We have made the first observation, via light
scattering and optical microscopy, of a monodisperse dis-
tribution of spherical droplets whose radius grows like
R~1'2. We have developed a firm understanding of
this growth law, and of the mechanism for the evolution
of the monodisperse droplet distribution, in terms of a
heterogeneous nucleation picture and a rate equation
(2). We have identified the cloud point as the point at
which there is a distinct change in morphology, from iso-
lated spheres to continuously modulated phases, reminis-
cent of spinodal decomposition. At this point there is a
large increase in the strength of the scattering and a spi-
nodal ring appears in I(g). Growth occurs via /pattern
coarsening, and the length scale behaves as L ~t /3.

Monodisperse droplet formation allows unprecedented
detail in the investigation of the kinetics of droplet
growth. With some improvements to the apparatus we
hope to quantify structural and depletion zone effects in
I(g). There are preliminary indications that these
monodisperse spheres are generic. We have seen spheri-
cal form factors in shallow off-critical quenches in a sim-
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ple nonpolymeric liquid system. We expect that this sort
of nucleation and growth of monodisperse droplets will
have technological significance.

We would like to thank D. Huse, J. Langer, and W.
van Saarloos for their interest and insights into this prob-
lem, and J. Rosedal for invaluable assistance in sample
preparation.
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