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Dynamic Trapping: Neutralization of Positive Space Charge in a Collisionless Magnetized Plasma
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(Received 17 January 1990)

It is shown by numerical simulations that in a collisionless plasma electron inertia leads to inefficient
neutralization of positive space charge and allows large positive potentials (p»kT, /e) to be established
and maintained on the time scale of ion motion. This is true even if the buildup of positive space charge
is so slow that it corresponds to a small fraction of the random electron current of the surrounding plas-
ma. A simple physical model clarifies the physics of the process and provides an analytical expression for
the potential.

PACS numbers: 52.25.Wz

It is a fundamental characteristic of plasmas that any
charge imbalance is opposed by electron displacements.
Accordingly, classical theories predict that collisionless
plasmas cannot support any significant magnetic-field-
aligned electric-field components, because these will be
quenched by electrons sliding freely along the field lines.
The absence of significant magnetic-field-aligned electric
fields is at the same time the condition for the magnetic
field to be "frozen in,

" which has fundamental conse-
quences for the dynamics of the plasma.

It is now known that magnetic-field-aligned electric
fields do exist naturally in the collisionless space plasma
and play a crucial role in the auroral process. They have

also been observed in active experiments in the iono-
sphere. ' Such fields can be supported by (1) the mag-
netic mirror force, as happens above the aurora, (2)
wave turbulence, as in the case of anomalous resistivity,
or (3) electron inertia, as in the case of double layers—for a review, see Falthammar.

In the present Letter we present a new mechanism
that can support magnetic-field-aligned electric fields.
Like the double layer it depends on electron inertia, but
unlike the double layer is not limited to scales defined by
the Debye length and it can support potentials much

larger than kT/e without any net current. In a situation
where a cross-field ion current needs to be neutralized by
magnetic-field-aligned electron currents, this mechanism
can led to incomplete neutralization and substantial
magnetic-field-aligned electric fields. In this Letter we

analyze the essential features of the mechanism by a nu-

merical simulation. The physics involved is clarified by
means of a simplified analytical treatment. Separate pa-
pers' elaborate on specific applications.

The code used in this simulation was constructed in a
workshop at the University of California at Berkeley in

1983 and is called PDw] (Plasma Device Workshop).
PDW1 is a magnetized non periodic, electrostatic par-
ticle-in-cell code with one spatial coordinate along the
magnetic field and three velocity coordinates. A more
detailed description of the code is given by Lawson. Be-
cause one application to our simulation is cross-field in-

jections of heavy ions into the ionosphere we have chosen

a background plasma with kT, =kT; =0.1 eV, consisting
of electrons and oxygens ions, and use the barium mass
(137 amu) for the injected ions. We use the correct
charge/mass ratio for all three species. The length of the
system is 100K,D, where X,D is the Debye length. The
plasma is limited at z 0 and z =L by two end plates
with boundary conditions chosen to simulate a surround-
ing homogeneous plasma: Particles which hit the end
plates are lost, and we inject half-Maxwellians at the end
plates with the same temperature and density as the
background plasma. The external circuit is chosen so
that it gives the same potential p(0) =t/t(L) =0 on both
end plates. In a region with a length of L;„;=30k.D cen-
tered in the middle of the simulation region at z =zp the
heavy ions are injected with a spatial distribution given

by

RpR(z) 1+cos
2

2tr(z —zp)

L n)

R(z) is the number of ions injected per time step and

grid cell at the coordinate z, Rp the number of particles
injected per time step and grid cell at z zp, and L;„„the
length over which the injection of heavy ions take place.
Rp can be varied in time in the simulation program. The
buildup rate of the positive charge in a flux tube over the
entire length of the injection region can then be com-
pared to the random electron current across the end sec-
tions of the flux tube. A crucial value is the injection
rate Rp R,„at which saturation electron current is re-
quired along the magnetic field. R,„ is then given by
R,„=n, ep(8 kT p/tmr, )' /L.

In the simulation we use the normalized parameters:
time T =tro~„potential U=eg/kT„and distance Z
=z/AD. We have made three simulations with different
injection rates, Rp/R, „=0.16, 0.31, and 0.63. Figure 1

shows the temporal evolution of the potential in the
simulation with Rp/R, „=0.31. Between the plots there
is a constant time difference AT=16. The injection rate
is gradually increased from T=O to 40, and then kept
constant. Thus there is, from the third plot, a constant
increase in the density by approximately h(hn;) =n, p/3
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FIG. 1. The potential in the simulation region at different time steps. The units are normalized: Z=z/Xu, U=ep/kT„and

T tao~. The injection rate is R 0.31R,„, where R „is the injection rate that requires electron saturation current along the
magnetic field.

between the successive figures.
The positive potential in the injection region becomes

larger than kT, p/e as soon as the relative density in-

crease exceeds unity. At the end of the run shown in

Fig. 1, hn;/n, p=5.7 and U=40. These high potentials
are contained to the injection region, and show no sign of
propagating into the ambient plasma. Consequently,
there are very strong magnetic-field-aligned electric
fields that surround the injected ions. These electric
fields are independent of the current density, and even

persist if the ion injection is switched off so that the
current is zero.

Figure 2 shows detailed simulation results at T =256
with the same injection rate as in Fig. 1. The injected
ions, which are shown in the top panel, have moved very
little during the simulation time and remain close to
their point of injection. The second panel shows the am-
bient ions which at T=O had a uniform density. They
are clearly beginning to move out of the injection region
in response to the positive potential. The electrons (third
panel) fill in the injection region so that quasineutrality
is approximately maintained. The net charge is shown in

panel number four: The positive space charge is incom-
pletely neutralized and surrounded by negative space
charges that screen it from the surroundings. The poten-
tial finally is shown in the bottom panel. It is closely
limited to the region of ion injection.

Before we present more simulation results we will

derive an analytical expression for the potential. As we

are interested in electron time scales, the ions are con-
sidered stationary. Ions are added uniformly in the in-
jection region from —L/2 to L/2. An electron which
enters the injection region with a magnetic-field-aligned

velocity v, p has a transit time t t„„„t=L/(v, ) =L(2eg/m,
+v, p) '/. It becomes trapped if the potential has
grown more than m, v, p/2e during the transit time. If p
increases much less than kT, p/e during a typical electron
transit time, then only the slowest electrons are trapped.
If also p) kT, p/e, then v, p«2ep/m„ the trapping con-
dition becomes

' I/2

, 2 ( 2L (y) I/2

m, dt

We assume that the surrounding plasma has a Maxwell
distribution with temperature T,p. The inllux of elec-
trons that satisfy the condition (2) is found by integrat-
ing the Maxwell distribution up to that limit. The
slowest electrons have a constant phase-space density
dn, /dv =n, p(m, /2rrkT, ) '/, which yields

dN, =2L
dt m,

' I/2 r

d me

dt 2rrkT, p

Integrating over time and introducing the average densi-

ty increase dn, dN, /L we obtain the approximate den-

sity of trapped electrons:

ne, trapped ne p(4ep/rrk Te p) &/z

The free electrons start into the injection region with the
average velocity (lv, pl) =(2kT, p/rrm)'/ and escape on
the other side. At the potential p they are accelerated to
the average velocity (2ep/m, +(lv, pl) ) '/, and their
density is reduced to

n, r„,=n, p(1+rrep/kT p)
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FIG. 3. The potential at z zo vs n, /n, p. The dots are ob-
tained from three computer simulations with different injection
rates, from top to bottom: R 0.16R „, 0.31R „, and
0.63R „.The thin solid lines show the potential of the analyt-
ical theory, Eq. (4). For reference, the Boltzmann relation is

shown as a thick solid line.
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FIG. 2. From top to bottom: The injected ion density, the
ambient ion density, the electron density, the net charge densi-

ty, and the potential at time T 256 of Fig. 1.

The total electron density at potential p is equal to the
sum of the trapped and free electrons:

' 1/2 ' ' —1/2

+ I+ (4)
kT0

4eg
xkr, pneo

Since quasineutrality requires that //tn; =n, —n, o, Eq.
(4) gives the desired relation between the ion density in-
crease and the potential. Notice that both L and dn;/dt
disappear in the final result. For high potentials,
»kT, p/e, the free-electron density is small, n, t ((n p.

Almost all the electrons then belong to the trapped

category and the potential is proportional to the square
of the density according to Eq. (3).

It is interesting to compare this with the collisional
case, where the relation between the density and the po-
tential is given by the Boltzmann relation n, /n, p

exp(ep/kT, p). The crosses in Fig. 3 show the poten-
tial from the computer simulations versus the relative
density increase n, /n, p, for the three different injection
rates. The thin solid lines in Fig. 3 show Eq. (4), and the
thick solid lines show the Boltzmann relation. When

n, /n, p is large, the Boltzmann relation gives much lower
potentials than the other calculations. For low-density
increases, hn; =n, p, the computer simulations and the
other two calculations approach each other. Results at
low-density increases are presented in a separate publica-
tion. ' The agreement between Eq. (4) and the computer
simulations is quite good. The largest discrepancy is ob-
tained for the highest injection rate, shown in the bottom
panel in Fig. 3, ~here the computed potentials exceed
Eq. (4) by up to 40%. One possible reason is that Eq.
(4) is derived under the approximation that only the cen-
tral low-velocity part of the infalling electron distribution
is trapped. This approximation becomes less valid for in-

jection rates Rp/R, „that approach unity.
Another reason for the discrepancy between theory

and simulation is that the theory assumes Maxwellian in-
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FIG. 4. Electron velocity distributions from the simulation

shown in Fig. 1. Upper panel: The injected velocity distribu-
tion. Middle panel: The velocity distribution outside the injec-
tion region, averaged over 100 time steps around T 336. Bot-
tom panel: The distribution at the center of the injection re-
gion at one time step, T 336.

falling electrons while in the sitnulation the electron dis-
tribution is modified by potential variations outside the
injection region, which can be seen in Fig. l. At the end
plates there are sheaths with a potential difference of ap-
proximately kT, o/e, and directed so that they accelerate
the electrons into the simulation region. The amplitude
of these sheaths stays approximately constant during
each run with constant injection rate, but is different be-
tween the different runs; it increases with the injection
rate. There is also a footpoint oscillation of the potential
at the edge of the injection region, which is clearly seen
between T =192 and 240. The frequency of this oscilla-
tion is not resolved here since it is higher than the sam-

pling rate between the potential profiles.

Figure 4 shows the injected electron distribution at the
end plates (upper panel) and also the distributions both
outside the injection region at Z =7 (middle panel) and

in the center of the cloud at Z=50 (bottom panel).
These curves were made by division of the velocity space
into cells with lengths of dv =(v,„—v;„)/100 and the

system length into cells with lengths of dz =4XD. For
Z=7, the shape of the distribution varied rapidly in

862

time, possibly due to the footpoint oscillations. In order
to show the average infalling distribution towards the in-

jection region we chose here to make an average over
100 time steps, centered at T =336. For Z =50, the bot-
tom panel in Fig. 4 shows the distribution at one time
step, T=336. The electron distribution outside the in-

jection region can be qualitatively understood as a Max-
wellian that has been modified by the end-plate sheaths.
The trapped distribution shown in the bottom panel of
Fig. 3 is approximately a plateau in velocity space, with

a phase-space density equal to the maximum of the in-

jected . Maxwellians at the end plates; according to
Liouville's theorem this is the highest possible value in

the absence of collisions. This plateau fills the whole ve-

locity range between the velocity limits for trapped parti-
cles in a potential p: —(2ep/m, ) ' & v„( (2ep/m, ) '

Thus it seems that a growing potential as we have stud-
ied here automatically traps electrons at the highest rate
that is physically possible for a given value of tIt. The ir-
regularities in the trapped electron distribution function
could be due to the footpoint oscillations, which will

modulate the velocity and density of the infalling elec-
trons during the process of trapping.

In conclusion, we have demonstrated by one-
dimensional computer simulations that a region where
heavy ions are added across the magnetic field can at-
tract and trap electrons along the magnetic field very
efftciently also in the absence of collisions. In the pro-
cess, the region gets a local positive potential which is
proportional to the ambient electron temperature and to
the square of the density, but independent both of the
length of the injection region and of the rate of ion injec-
tion. The conditions for this result are that the density
increase is larger than the ambient plasma density, and
that the heavy ions are added at such a slow rate that
space-charge neutrality can be maintained by magnetic-
field-aligned currents below the electron saturation cur-
rent. Very strong magnetic-field-aligned electric fields
can by this process be maintained at low magnetic-field-
aligned current densities.
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