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Threshold Enhancement and the Flavor-Changing Electromagnetic Vertex
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We analyze the evolution of the flavor-changing electromagnetic vertex as a function of the external
initial quark mass m„ in the three-generation standard model. We find a substantial threshold enhance-
ment in the vertex, to one-loop order, when m, is of the order of the mass of the 8'boson. We comment
on QCD corrections.
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Flavor-changing radiative decays, such as b sy,
have been the subject of intensive investigation in the re-
cent literature. ' The conventional approach to such
neutral-current vertices has been to exploit the large
mass of the top quark in processes where it participates
as an internal particle, in order to "evade" the suppres-
sion of the neutral current due to the Glashow-Ilio-
poulos-Maiani (GIM) mechanism. 7

On the other hand, little is apparently known about
the behavior of the flavor-changing electromagnetic ver-
tex when the mass m, of an external particle becomes
large, say, comparable to M~. s The question then natu-
rally arises as to how the GIM mechanism for the vertex
might be modified for m, -M~. With the current limit
on the top-quark mass from the Collider Detector at Fer-
milab passing 90 GeV, this question could well be
relevant to phenomenology.

In fact, we have found that the vertex receives a
significant enhancement as m, becomes -Mtt, at least
to one-loop order. The origin of this enhancement is
completely different from the case where the mass of an
internal quark becomes large, and has to do with the on-
set of physical thresholds in the internal loop integration.

The vertex function V" for q, q, y takes the form

V" = (k y" —k"k)(FLL+F R)

+its""k„(F2trt, L+ F2 m, R),
where R,L= —,

' (I + y ). Fo—r real-photon emission (k
=0), only the spin-flip term contributes, and in the case
where the mass of the initial quark m, is much larger
than the mass of the produced quark m, , the width is

A typical diagram contributing to q, q, y to one-

loop order is illustrated in Fig. 1. The one-loop form
factors were evaluated in the "low-energy" limit of small
external quark masses, rrt, «Mtt, in Ref. 4, for very
light and very heavy internal quarks:

F2 (m„mt 0) =Fq (rn„0)+(4 ew+ 2 et)

F2 (m„m( ee) =F2 (m„0)+(p ett+ 4 et) .

(4)

en and et denote the charges of the IV and the quarks in

the loop, in units of the electron charge. The tttt-
independent term F2 (m„mt 0) in the low-energy form
factor does not contribute to the decay rate, which is the
main feature of the GIM suppression mechanism [due to
Kobayashi-Maskawa (KM) matrix unitarity].

We now consider the evolution of the one-loop vertex,
with light internal quarks, as a function of the external
quark mass m, . In the standard model with three gen-
erations of quarks, the only relevant application is to the
decay t qy, q (c,u). For our present purposes, we
will confine our attention to this decay mode, although
our results have application to various extensions to the
standard model. '

For the top-quark decay, we use the unitarity of the

1(q, q, y) = m, GF +F2 (m„mt)V, tVt,
128m

(2)
qe

~ 2
F~ = g F'2

32 2~2 (3)

where V,I is the Kobayashi-Maskawa matrix, and
where we introduce the dimensionless form factor F2, FIG. l. A typical one-loop diagram contributing to

q, q, y. The dashed line represents the unitarity cut corre-
sponding to the physical threshold q, realfWll q, y, where
I is the internal quark.
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three-generation KM matrix to reduce Eq. (2) for the
width to

I'(t —qy) =,m, 'GF'I V,b Vb, I 'It)F2 (m& ) I
',

.030

.025
~Fthm(

where we define a "net" form factor hF2,

AFp (m&) =F2—(m&, mb) —F2 (m„rnd ) .

The contribution to the amplitude from the difference in

the form factors of the internal s and d quarks can be
neglected, given that mb»m„and the fact that V„V,~= Vrb~bq.

The expression for F2 (m„mt) to one-loop order can
be extracted from Ref. 4. After some simplification, we

obtain (neglecting m~ =m, „compared to m, )

F2 (m„mt ) = da ~ da2(et& a
~
+ et a ~

)—
aP Y

x [2a~(1 —a~a2)+mt at(1 —a~a2)],

(8)
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FIG. 2. The net form factor &IF2 (m, ) IEq. (7)l for t qy,
as a function of mt. M~ 80 GeV, mq =5 GeV, and md =0
are fixed. The dashed line shows the effect of including the
width I ~ = 2 GeV of the W propagators in the vertex func-
tion.

where a~= l —a],

(9)

t real[WI] qy (where I denotes the various quark

Y=a +m a —
mg a a a —I'E, flavors in the loop), illustrated by the cut in Fig. 1. The

presence of several physical thresholds in the vertex
and m, =m&/M—tt, mt =mt/Mtt/. makes it possible to evade the GIM subtraction between

The ie prescription [Eq. (9)] is crucial for handling pairs of form factors. To demonstrate this effect explic-
the onset in the vertex of the physical thresholds itly, we have evaluated the absorptive part of the form

factor Fp [Eq. (8)] analytically,

ImF2 (m„mt) = B(m, —M~ —mt) eaMtv(4Etm, —3mt )ln
m, W

+etmt (2E&t/m& —3Mtv)ln +4(et« et)(Eamt ——2EtM~)P, (10)E! P

where Ett/, Et, and P are the c.m. energies and momen-

tum of the W-quark pair in the deca~ t real{Wl],
Et&rt =(m, ~Mu -tmt )/2m„P X' (m&, M&&, mt )/
2m, . We can obtain the real part of F2 from the disper-
sion relation

&
ImFq (m, mt)

ReF2 (m„mt) =—P
( ),drn
MW+m m m

. 10

08 — —&~ F2 (»t, »t)

.06

Our result for the net form factor hF2 (m, ) [Eq. (7)] is

plotted in Fig. 2, showing a dramatic enhancement in the
neighborhood of the thresholds for t real[W+ (d, b)],
compared to the low-energy limit.

This enhancement is due entirely to the evasion of the
GIM subtraction between the individual form factors of
the internal d and b quarks, when m, lies near the upper
threshold. This is illustrated in Fig. 3, where we plot the
absorptive parts of the d- and b-quark amplitudes. As

m, passes M~+md, the d-quark amplitude acquires an

absorptive part, which apparently increases quadratically
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FIG. 3. Absorptive parts of the d-quark (dashed line) and

b-quark (solid line) form factors, as functions of m, near
threshold. M~, mb, and md are as in Fig. 2.
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with rn, —(Mw+md) [see Eq. (13)]. The evasion of GIM occurs in the sense that the absorptive part of the d-quark

amplitude is unsubtracted until m, passes the b-quark threshold, where it makes a contribution CL (mb —md) to the2

amplitude. While this term is still quadratic in the loop-quark masses, the coegcient of this quadratic piece turns out to

be much larger than the coefficient of the low-energy quadratic form factor [Eq. (4)]. From Eq. (10), we have the

mt =0 limit (cf. md =0)

ImF2 (m„mt =0) = e(m, —Mw) —2(ew —et)MwP +ewm, MwPln 1+2 2 2 2~mr

mf Mg
(12)

If m, is not too far above the massless-quark threshold,

mi —Mw«Mw, we find

m( —Mw
ImF2 (m„mi =0) =8iret

2

We therefore obtain the following expression for the
"enhancement" of the t qy form factor, for m, at the

internal b-quark threshold, compared to its low-energy

limit [cf. Eq. (4)]:

t hF2 (mt =Mw+ mb ) t 32rret

AF2 (m, «Mw)

neglecting ReF2, which only contributes =7% to the

net form factor at m, =Mw+mb. [Including the width

I w = 2 GeV of the W propagators in the vertex function

flattens the peak in dF2 (m, ) somewhat, reducing the

threshold enhancement from =20 to =14.5 near m,

=Mw+mb (see Fig. 2); the enhancement of the rate for

t qy therefore amounts to a factor of = 200 at the b

quark threshold. )
We stress again that this evasion of the low-energy

GIM mechanism is completely different from the case of
a heavy quark in the loop. In the low-energy limit,

F2 (m„mt =0) is completely subtracted out in the net

amplitude, due to the GIM mechanism. Near threshold,

however, this part of the form factor [Eq. (13)] produces
the large enhancement observed in Fig. 2.

A more conventional softening of the GIM mechanism

also occurs for m, well above threshold, where the mt-

independent part of the form factor is mostly subtracted

out,

(14)
2ei +eg

ImF2 (m„mI 0) = ImFi (m„mt =0)

et (m& —2Mw)ln(mt )mt
m,4

(IS)

[neglecting terms of O(mt )]. This accounts for the

asymmetry of the curve in Fig. 2 about the peak, since

the low-energy GIM mechanism is softened by a loga-

rithm at large m, .
Despite the significant threshold enhancement, the

rate for t qy is still very small, at least to one-loop or-
der. For example, I

~ 1 ~(t qy) =0.2tVb~t eV, for

m, = 100 GeV, despite a threshold enhancement of
=90 in the rate.

On the other hand, it is well known that there is a

t
large QCD correction to the one-loop form factor for
light internal quarks, at least in the low-energy limit
where the QCD-corrected vertex has been evaluated us-

ing an effective Lagrangian approach. " However, the
QCD-corrected form factor for heavy external quarks is

unknown, and therefore the theoretical situation with

respect to t qy is uncertain; based on the known low-

energy form factor, one might expect a large QCD
correction in this case, given that the internal quarks
(b, s,d) are light. To make an order-of-magnitude esti-
mate, we use the low-energy QCD-corrected form factor.
We then find I QCD(t cy) =1 eV, at m, =100 GeV
(using a, = 0.1 and md = 10 MeV). ' This would iinply
a branching ratio of =10 [given I t,i=I'(t bW)
= 90 MeV].

The possibility of a threshold enhancement to the low-

energy QCD-corrected vertex then becomes extremely
important, since a large enhancement, such as occurs in

the one-loop vertex, could make t qy accessible at the
Superconducting Super Collider. A simple qualitative
argument, however, suggests that a significant threshold
enhancement is unlikely. This has to do with the fact
that the absorptive part of the amplitude for the internal
d quark (which is responsible for the enhancement of the
one-loop amplitude) increases at least linearly with m,
above threshold [cf. Eqs. (12) and (13)] due to the phase
space for the on-shell internal particles. The contribu-
tion from the absorptive part of the QCD-corrected ver-

tex, near the b-quark threshold, will therefore be
suppressed at least by a power of mb compared to the
low-energy (logarithmic) form factor.

However, a full calculation of the QCD-corrected
Aavor-changing electromagnetic vertex for large external
quark masses is clearly needed in order to fully explore
the possibility of significant threshold effects.
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