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Duality Transformation for Non-Abelian Lattice Gauge Theories
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In non-Abelian lattice gauge theories, the Gauss s-law constraint is solved, enabling gauge-invariant
local dynamics. For the 2+ 1, SU(2) case, the result is a quantum theory of a discretized membrane.

Further, this is equivalent to a theory of integer-valued scalars with derivative interactions and a "dual"
gauge invariance. This is the dual form of 2+ I, SU(2) gauge theory.

PACS numbers: 11.15.Ha

n, I n,i) j
where

U(nij ) U(ni)U(n+i, j )U (n+j,i)U (nj )

and EC is the coupling constant. Here n labels the sites of
a 2D square lattice and i is the unit vector along the ith
direction. Each link (ni) is associated with an SU(2)-

It is widely believed' that certain topological degrees
of freedom (e.g. , monopoles) are responsible for screen-
ing the massless gluons and confining the quarks in

quantum chromodynamics. Such a mechanism is in

operation2 in 2+1 and 3+1 U(1) lattice gauge theories.
The 2D XY model3 has provided valuable hints for this
proposal. Duality transformations 5 separate such topo-
logical degrees of freedom and isolate the effects of com-
pactness of the group. Therefore, an analogous transfor-
mation for non-Abelian lattice gauge theories could
prove to be valuable. However, at present, the duality
transformation has been carried out successfully only for
symmetries corresponding to Abelian groups. For non-

Abelian groups similar attempts have appeared to be
cumbersome. This may partly explain why earlier work-
erss proposed topological objects corresponding to Abeli-
an subgroups of the non-Abelian group as relevant for
confinement, even though it is not apparent that this is
enough.

We show here, in the context of 2+1, SU(2) lattice
gauge theory without matter, that it is possible to explic-
itly carry out the duality transformation in the Hamil-
tonian formalism. The dual theory has some features
analogous to the Abelian case. s

The Hamiltonian is

H PE(ni) —K g tr[U(nij )+U (nij )],

symmetric top, whose configuration (i.e., the rotation
matrix from space-fixed to body-fixed axes) is given by
an SU(2) matrix U(ni). The angular momenta with
respect to space-fixed and body-fixed frames are E+(ni)
and E —(n+i, i), respectively. They generate left and
right SU(2) rotations on U(ni) E~(.ni) and E (n
+i,i) commute with each other and, moreover, E+(ni)

E —(n+i, i); i.e., the total angular momentum is the
same in both frames and this is denoted by E(ni) in Eq.
(1). However, the axis of rotation can have arbitrary in-
clinations in the two frames. Complete labeling of the
basis requires eigenvalues m+(ni) and m (n+i, i) of
both E j(ni) and E —.(n+i, i), in addition to the label
j(ni) for E+(ni) E —(n+i, i) Thus .a basis for the
Hilbert space is ~j[(ni), m+(tti), m —(n+i, i)J) where
all of them are integral multiples of —,

' ("half-integers")
with j(ni) (m+(ni)) and )m (n +i,i)). This is be-
fore the Gauss's-law constraint is implemented.

The non-Abelian Gauss's law giving the physical
states is P; [E+(ni)+E (ni)] 0 at each site, implying
the physical states are invariant under local gauge trans-
formations. This is to be contrasted with the continuum
case, where the electric-field strengths 8, a 1,2, 3,
commute with each other, but Gauss's law D;(A)'bled

0 involves the vector potential A which does not com-
mute with 8;. On the lattice —E (n+i, i) is just the
parallel transport of E+(ni) from n to n+i In the limit.
of lattice spacing a 0, E+(ni) a I 8;(x). The ad-
vantage of using the basis where E+(ni) and E (ni)
are diagonal is that Gauss's faiv can be explicity and lo-
cally solved to get a basis for gauge-invariant states.
This has been noted by one of us earlier. For this we
make a change to the basis where the following operators
involving sums of angular momenta are diagonal,

{E(nl),E(n2), [Ey(nl)+E+(n2)l, [E(nl)+E(n2)l, [E+(nl)+E+(n2)], [Ei (nl)+Ei (n2)]I,
and a further change of basis using

[E(n 1 ),E(n2), [E+(n 1 )+E+(n2)], [E (n 1 )+E—(n2-)]

[E+(n 1)+E+(n2)+E—(n 1)+E—(n2)], [E+ (n 1)+E+(n2)+E —(n 1)+E—(n2)]j .

The gauge-invariant states are just those where, for each n, the last two operators of the above set have zero eigenval-
ues. In this case, moreover, the eigenvalues of [E+(n 1 )+E+(n2)l and [E—(n 1 )+E—(n2)] are equal and we label
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FIG. 1. Dual lattice with one set of diagonals drawn. The
original plaquettes are represented by dotted lines.

them by j(n12). Thus a basis for gauge-invariant states
1S

~{j(nl), j(n2), j(n12)]). (2)
Thus three half-integers are associated with each site.
The number of physical degrees of freedom for gluons is
also three: one transverse polarization for each of the
three gluons. Such a matching is valid for higher dimen-
sions and other gauge groups also. '

In the above basis for gauge-invariant states, the la-
bels are not mutually independent. j(n12) is a value ob-
tained by adding angular momenta j (nl) and j(n2) [or
also j(n —1, 1) and j(n —2, 2)] and hence the three num-
bers satisfy triangle inequalities. These constraints may
be conveniently represented on the dual lattice. We as-
sociate j(ni) (i 1,2) with the link dual to (ni) and
j(n12) with the diagonal completing the corresponding
dual links into a triangle (Fig. I). We therefore associ-
ate a half-integer with each link of the dual lattice where
one set of diagonals is also drawn (Fig. 2). This means a
basis for gauge invariant s-tates is provided by all tri

FIG. 2. The effect of the plaquette operator is to change
the lengths of the six arms of the corresponding hexagon on the
dual lattice.

angulations with half-integer sides and with coordina
tion number six (the Euler characteristic being equal to
that for the 2D lattice).

Gauge invaria-nt local dynamics. —We consider the
dynamics on this gauge-invariant subspace directly.
This provides gauge-invariant local dynamics for non-
Abelian gauge theories

The piece E(ni) of the Hamiltonian (1), when acting
on basis (2), is simply replaced by j (ni) [j(ni)+1]. The
plaquette term tr[U(nij)] has the eff'ect of changing the
lengths of the six lines emanating from the correspond-
ing dual site n* (Fig. 1) by ~ —,'. The transition-matrix
elements from the lengths {j~,j2,j3,j4 j~5 j39] of these six
lines (Fig. 2) to the corresponding primed values can be
computed" by repeated applications of the Wigner-
Eckart theorem. The matrix element depends on the
lengths j~4jz3,j5jsj9,j~v (of the edges of the hexagon),
though these do not change under the action of the pla-
quette centered at n . The matrix element is"

J]4
(m)=

J i J4 J23 J2 J3 JS J] J]S J6 J2 J]S J9 J3 J39 J |O J4 J39

J4 Jl 2 J3 J2 2 JiS J] r JiS J2 2 J39 J3 Y J39 J4

x J2j ~+1J2j 2+1J2j 3+1J2j4+1J2j ~s+1 J2j 39+1

x j2j{+1+2j2+1/2j3+IJ2j4+IQ2jI5+I+2j39+1(—1)" '" '" " " '" " (3)

where we have a 6-j symbol (the curly brackets) associ-
ated with each of the six triangles of the hexagon. The
angular momenta involved in each 6-j symbol are the
original (j) and the new lengths (j') of the two arms of
the corresponding triangle, the edge of the hexagon, and

corresponding to the tensorial property of U(ni )
Thus the time evolution involves local Auctuations of

the triangulated surface. We have therefore mapped
2+I, SU(2) lattice gauge theory to a spectfic quantum
dynamics of a discretized membrane

Duality transformation. —Triangle-inequality con-
straints in (2) are naturally untangled by assigning ele-
ments y of a metric space X to the vertices such that the
distance d(p~, p2) in X between p~ and y2 associated

with the two vertices of a dual link is the corresponding
j. However, it is not possible to have global isometric
embedding of a triangulated surface in any metric space.
A simple counterexample is provided by the hexagon
(Fig. 2) where all six arms and one side have a common
length j & 0 whereas the other five sides are zero. The
triangle inequality is valid for each of the six triangles.
However, one side of the hexagon is longer than the sum
of the other five sides, precluding its embedding in any
metric space.

On the other hand, each triangle can be separately
embedded in a metric space (local isometric embedding).
For the metric space, we may choose a square lattice
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equipped with the taxicab metric where the distance be-
tween nearest neighbors is 2 . We thus associate two in-

tegers to each vertex of the triangle so as to reproduce
the length of its sides. The assignment is not unique.
Any two choices will be related by a lattice translation
and a "lattice rotation, " once we presume an orientation
for the triangle. By a lattice rotation about a point n we

mean the following. A point m&n moves to I' such that
the distance from n is unaltered. All other points l move
to l' such that d(l, n) =d(l', n), and d(l, m) =d(l', m').
This defines a rotation operation for almost all lattice
points.

Thus each site n of the dual lattice is associated with
twelve ordered integers y(n ) corresponding to the six
vertices of the triangles around n . These coordinates
are not all independent because the common edge of two
adjacent triangles should have the same length. This
provides three constraints among the twelve coordinates
for each dual site n . The effect of the plaquette opera-
tor in the Hamiltonian (1) corresponds to a hopping to a
nearest neighbor of the 2D metric space for each vertex,
without violating the above constraint. As a result there
are 12 —3 9 independent vibrational modes. If the
discreteness of these coordinates is ignored, these vibra-
tional modes are massless because the coupling involves

only the differences in coordinates of the neighbors.
Not all of these nine modes are physical. Different as-

signments of the twelve coordinates reproduce the same
triangulations and are to be interpreted as gauge-
equivalent states with respect to a new local gauge in-

variance (which will be referred to as the dual gauge in-
variance g ). A dual gauge transformation corresponds
to a lattice translation and a lattice rotation of coordi-
nates associated with any triangle. The scalar field
bp(n*)) is the dual potentials in the sense that they are
the potentials defined using the electric fields instead of
the magnetic fields.

The dual gauge transformation has three parameters
for each triangle, each triangle is shared by three ver-
tices, and to each vertex there are six triangles. As a re-
sult, six of the nine vibrational modes are unphysical.
This leaves three physical modes corresponding to the
three transverse gluons of the 2+1, SU(2) theory. The
situation is analogous to 2+1, U(1) lattice gauge theory
which is mapped onto a theory with one integer-valued
scalar. As in that case, we may replace ' the discrete-
valued y by a field taking continuous values in ( —~,
+~) together with certain "topological" degrees of
freedom. Their implication for linear confinement and
the continuum limit requires more detailed analysis, and
will be presented elsewhere. "

To summarize, we have solved the Gauss's-law con-
straint for non-Abelian lattice gauge theory locally and

explicitly and obtained dynamics on the physical states.
This dynamics is local and the 2+1, SU(2) case is inter-
preted to be a quantum theory of a discretized mem-
brane. This allows a close relationship between the 2+1,
SU(2) gauge theory and 2+1 gravity. We have further
mapped this theory onto a theory of integer-valued sca-
lars with nonlinear derivative interactions and a new

(dual) gauge invariance. This scalar field is the dual po-
tential. This theory is analogous to the picture of pho-
tons plus monopole plasma of 2+1, U(1) lattice gauge
theory and is to be regarded as the dual transform of the
non-Abelian lattice gauge theory. All effects of the com-
pactness of the link variables U(ni) and of the gauge
group have been completely isolated in our approach.

The above ideas can be extended to higher dimensions
and other gauge groups. ' It is yet to be seen whether
this approach solves the N ~ limit of SU(N) gauge
theories. Matter fields in interactions with the gauge bo-
sons can be incorporated essentially in the same way as
presented here. ' It is to be hoped that the confinement
mechanism will be unambiguously settled and nonpertur-
bative effects can be handled. These techniques provide
the dual transformation of other theories with (global or
local) non-Abelian symmetries as well.
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