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Transition between Flux Liquid and Flux Solid in High-T, Superconductors
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We have studied flux melting near the H, I line in Y-Ba-Cu-0 using a variational Monte Carlo
method. The existence of a flux-liquid phase has been observed and the transition line between flux

liquid and flux solid in the H-T phase diagram has been determined. The width of the liquid phase in-

creases with temperature as T at low temperatures, as predicted by Nelson, and faster than T' at
higher temperatures, eventually crossing over to the high-field melting curve.

PACS numbers: 74.60.Ge

One of the most interesting properties of the high-T, .

superconducting oxides is the unconventional behavior of
the flux-line lattice (FLL). In ordinary, "low-T„" bulk
type-II superconductors, the Abrikosov FLL is essential-

ly stable throughout the mixed-phase portion of the
phase diagram in the H-T plane (only when the external
field H is very close to the mean-field H, 2 will the
thermal fluctuations start affecting the positional order).
The FLL of the new oxide superconductors is, however,
melted well below the mean-field value of H, 2

[T,(H)], ' similar to what is expected in two-
dimensional thin films. Moreover, recent experiments
indicate that in a single crystal of YBa2Cu307-„ there
exist two distinct vortex-liquid regimes, a hexaticlike re-

gion followed by an entangled isotropic region. This
novel phenomenon of a flux lattice melting is directly re-
lated to the weak interplanar couplings, small intrinsic
intraplane coherence length, and high critical tempera-
tures in copper-oxide superconductors.

One can study statistical mechanics of the FLL by
mapping flux lines onto a two-dimensional interacting
quantum system. This mapping, in which we assume,
for simplicity, that the interaction is instantaneous and

neglect the directional dependence of the electromagnet-
ic vortex interaction, predicts that a flux liquid will al-
ways exist at any finite temperature at fields slightly
higher than the lower critical field H, ~. By arguing that
the ground state is a superfluid entangled vortex liquid
and using the results for a 2D hard-disk boson system, '

the transition between the flux liquid and the flux solid is

given by
r

Hx —Hc kgT M,
Bh = = const x

Hc M

where H„(T) is the transition (melting) field, e~ is the
energy per unit length of a single flux line, M, is the
quasiparticle effective mass along the c axis, and M is
the intraplane effective mass.

In this paper we present the results of a variational
Monte Carlo calculation on the flux-line system in

YBa2Cu307 —„,obtained by utilizing the mapping to the
interacting quantum system. We have observed a nar-
row flux-liquid phase in the vicinity of H, t, and deter-
mined the melting line H„(T). The "width" of the
liquid phase region increases as T at low temperatures,
and faster than T at higher temperatures, signaling the
eventual crossover to the high-field melting curve deter-
mined via Lindemann's rule. 5 We consider only the per-
pendicular (Hllc axis) external field which we choose to
be along the z direction. In the London limit, the trajec-
tories of vortices are isomorphic to the world lines of
quantum particles (flux bosons). Strictly speaking,
these particles are not bosons and their Hilbert space is
not limited to regions of specific permutation symmetry.
However, if one considers an infinite superconductor,
corresponding to a quantum system at T 0, we are only
concerned with the ground state which is, quite general-
ly, a fully symmetric wave function. Thus, for our pur-
poses it is perfectly accurate to treat these particles as
bosons. The "Hamiltonian" for the corresponding two-
dimensional interacting boson system is given by

H- —g V,'+ g, , gp(r;, /Z),
(ktt T)', yp'

2E] &+j
(2)

+=/f(r;J) =/exp
' a2

aio 1

where p is the density and a&0 and a2 are two variational
parameters to be determined by minimizing the Gibbs
free energy for a given H. In the region of flux-liquid to

where Z~ -(M, /M)e~ and ECp(x) is the modified Bessel
function. Thus the problem of the flux-lattice melting
can be treated as the fluid to solid phase transition in the
2D bosonic system described by the above Hamiltonian.

The nature of the bosonic ground state of the Hamil-
tonian (2) can be studied by a variational Monte Carlo
technique. We start by choosing a Jastrow-type varia-
tional wave function that describes the ground state of
the fluid phase,
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flux-solid transition, we find a2=3 optimizes the ener-

gy.
" It is reasonable to assume that the main effect of

the varying external field on the wave function is to prop-
erly rescale the density. Thus, we explicitly include the
density in Eq. (3). The parameter a&o is then regarded
as a slow varying function of the external field. The
crystalline ground state was constructed by multiplying
the Jastrow wave function (3) by Gaussian factors

Q; expl —Ap(r; —R;) ] centered at triangular lattice
sites fR;t. These factors explicitly break the translation-
al symmetry of the Jastrow wave function and localize

(4)

particles on lattice sites. The lack of symmetry with

respect to particle interchange should not be a major
shortcoming since many physical properties are quite in-

sensitive to symmetrization. ' ' In the following, we

compute and compare the Gibbs free energies for two

phases. The transition between these two states occurs
when the free energies are equal. We took the mass ra-

tio QM, /M =5 deduced from the ratio of the slopes of
H, 2I and H, 2~ and x =X/(=50. The magnetic penetra-
tion depth k(T) is from Ref 14. .

The Helmholtz free energy per unit volume at density

p for both liquid and solid state is obtained from
I~

(@IH iq ) 2 (kg T) ' (ks T)', yoF= ' ' — g(r)V lnf(r)dr+3Ap +p g(r)KO(r/X)dr,
2 4zk

where 0 is the area and g(r) is the pair-correlation
function. Note that 8 0 corresponds to a Jastrow
liquid state. We can calculate F if we know the pair-
correlation function g(r):

N(N —1)f f tet'dr3dr4 dry
g(r) =

p f t0t dr~ dr~
(5)

For a crystalline state, the g(r) used in Eq. (4) is an

average over the orientation and different lattice sites. '

The formal analogy with a classical N-body system sug-
gests use of the Monte Carlo method, in which sample
configurations are generated from the trial wave function

by the Metropolis random-walk algorithm, to calculate
g(r). ' ' The melting line in the H Tphase diagr-am
can be found using the following approach. To begin
with, we compute F using Eq. (4) for a range of densities
(determined by 8!). The external magnetic field H and
the Gibbs free energy G are then found from relations
8 =pro, H H, ~ 4' 8F/88, —and G =F—(8/4z)(H

H, ~). The v—alue of a~a had to be optimized for each 8
or external field H. It is important to note that the ener-

gy scaling used in the isotopes of helium is not valid any
more because of the Bessel-function-type interaction po-
tential between flux bosons. ' However, the pair-
correlation function still possesses a scaling law g~, (r)
=g~, (Jp~/p2r), where g~, (r) and g~, (r) are the pair-
correlation functions at two different densities, p~ and p2.
Consequently, it is possible to use the scaled pair-
correlation function g~, (r) from a fixed density p~ to per-
form integrals in Eq. (3) and obtain F at density p2.

All the computations were performed on the
ARDENT-Titan 3 minisupercomputer. We used a 224-
particle system in a rectangular box of aspect ratio
443/7, chosen to accommodate a perfect triangular lat-
tice at high densities. Starting from a random config-
uration for the liquid state and a triangular lattice for
the crystalline state, we let the system approach equilib-
rium for 336000 steps and took the average over the
next 873600 steps. The size-dependent effects were
found to be negligible. The overall statistical error is es-
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FIG. 1. The ground-state energy of the flux boson at
T 10.58 K vs the external field. The upper curve is obtained
with the "Auid" trial wave function and the lower curve with
the "solid" trial wave function. The phase transition between
these two states occurs at H —H, l 0.71X10 ' Oe when the
Gibbs free energies are equal.
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t
timated to be less than 4% on the Gibbs free energy G.
The extensive running time made it impractical to exact-
ly optimize the wave function for each external field.
These uncertainties would decrease for higher densities.
In Fig. 1 we have plotted the Gibbs free energy versus
external field in the region of the phase transition at
T 10.58 K. The main feature is that, for 0—H, ~

higher than 0.71X10 Oe, the optimum value 2&0,
whereas for H H, I lower th—an 0.71X10 Oe it is the
value A 0 that yields the minimum energy, indicating
that the system prefers a fluid-type state to a solid-type
one. The corresponding transition densities are
ps„;d 2.60X10 cm and p»~;d 2.73X10 cm, or
7.56&10 (k ) and 7.93&10 (X ) in terms of re-
duced units, respectively. The kinetic energy is about an
order of magnitude larger than the potential energy at
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the transition point, while the pair-correlation function

g(r), shown in Fig. 2, exhibits only a short-range order
in the liquid right before freezing. The Lindemann ra-
tios y for the crystalline state are given in Table I for
several external fields of interest at T=10.58 K. The
lattice melts at T 10.58 K for y larger than 0.282. For
T 35 K this value is 0.287, while for T=68 K the Lin-
demann ratio at the melting line is 0.294. These values
of ymcfijgg are consistent with y,~„„x=0.3~0.02 found

in other quantum systems. '

The melting curve in the H-T diagram is depicted in

Fig. 3. The circles denote our calculations and the solid
line is the least-squares fit (for low T) by the formula
H„—H, ~ aT . The best fit is obtained for a=8.02
X10 '0 Oe/K2. The agreement with Eq. (1) is very

good indicating the validity of the picture proposed by
Nelson. The width of the entangled liquid phase is

found to be quite narrow. However, it rises faster than
T at higher temperatures, as seen froin Fig. 3, and

eventually crosses over to the high-field melting curve:
There, a qualitatively similar quantum interaction model
can be constructed to describe a melting transition. '

We attribute this faster increase to the renormalization
of H, ~ downward from its mean-field value.

For conventional isotropic type-II superconductors,

TABLE I. The Lindemann ratio y in the crystalline state
for several values of the external field at T 10.58 K.

H —H, ~ (10 Oe)

0.71
0.80
0.90
1.00
1.20
1.40

0.282
0.277
0.272
0.266
0.239
0.236
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FIG. 2. The pair-correlation function of liquid state at the

transition point H —H, ~ 0.71x10 ' Oe and T 10.58 K.
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FIG. 3. The phase diagram for flux-lattice melting near the
H, I line in Y-Ba-Cu-0 system. The circles are values obtained
by the Monte Carlo calculation while the solid line represents a
least-squares fit discussed in the text.

M, /M = 1, ir = 1, and T, = 10 K. From our calcula-
tions for the Y-Ba-Cu-0 compound and the quantum
correspondence theorem we estimate that, except very
close to T, (H =0), the melting field H„and the corre-
sponding transition densities in conventional supercon-
ductors would be several orders of magnitude smaller
than in Y-Ba-Cu-0 at a moderate temperature, say, 30
K. It is therefore of little interest to investigate the
flux-liquid state in conventional superconductors. It is

important to emphasize here that the appearance of the
entangled flux-liquid phase in high-T, superconductors is

mainly caused by high critical temperatures and large
mass anisotropy. The logarithmic dependence of the
"mass" of a flux boson on the value of the Ginzburg-
Landau parameter implies x plays a less important role
in flux melting close to the H, ~

line. This is different
from the flux melting in the region of the H, 2 line, where
the melting curves are suppressed well below the mean-
field upper critical field line mainly due to the large
value of ir. Finally, our results for H„(T) should be
somewhat modified to account for a finite sample size
and the fact that the mass of a flux boson is mostly of the
magnetic origin in a very dilute case. 2

In conclusion, we have observed the existence of a
Aux-liquid phase in high-T, superconductors in the close
vicinity of H, ~ in a Monte Carlo simulation, and estab-
lished the melting curve for the Y-Ba-Cu-0 compound
in this region of phase diagram. The large mass anisot-
ropies and high critical temperatures in high-T, oxides
played key roles in the flux melting. We expect the melt-
ing tendency would be more pronounced in Bi-Sr-Ca-
Cu-0 materials in light of their much higher value of
M, /M. While we have concentrated here on the narrow
region of the phase diagram in the vicinity of H, ~, where
mapping to the quantum problem is best understood, we
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expect that the region close to 0,2 could also be investi-
gated by similar methods, i.e., by defining a suitable
eff'ective quantum problem.
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