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Nucleation of Magnetization Reversal via Creation of Pairs of Bloch Walls
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For a ferromagnet with exchange, uniaxial anisotropy, demagnetizing field, and an external magnetic

field directed oppositely to the magnetization, the Landau-Lifshitz equations have time-independent,

planar, local solutions of the Bloch and Neel type. These solutions are unstable. Analogous to a water

droplet in supersaturated vapor for which a radius of unstable equilibrium exists, the solution for a given

magnetic field is the configuration of smallest energy through which a magnetization reversal can nu-

cleate.

PACS numbers: 75.60.Ch, 75.60.Ej, 75.60.Gm

The dynamics of ferromagnets is phenomenologically
described by the Landau-Lifshitz-Gilbert equations

constant. '

The Landau-Lifshitz-Gilbert equations then read

M a BM= —y[MxH, s]+ Mx
M

where the magnetization M(x, t) (of constant modulus
M) depends on space and time, y )0 is the gyromagnet-
ic ratio, and a the damping constant. The elective field
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~ exchange term

is obtained as the variational derivative of the total ener-

gy, which is a functional of the magnetization and its
gradients. The energy density then reduces to

tan(8/2) p cosh(x/B), (6)

Several solutions to these nonlinear equations are
known, in particular the static and the moving Bloch
wall (Walker's solution), the static 2z wall, 34 and local
solutions traveling along the anisotropy axis. 5

We consider the boundary conditions that the magne-
tization at infinity is opposed to the magnetic field:
8(+ pp) n. Then the following exact static solution ex-
ists

+(Q/8tr)sin 8

+(I/8tr)sin 8cos p

—(2H, /8tr) cos8

axial anisotropy term

demagnetization term

Zeeman term . (3)

8 is the angle between the magnetization and the mag-
netic field H„and p is the azimuthal angle measured
from the x direction. In (3) the dimensionless units of

length, AQ't =1,
frequency, 4zyM =1,
magnetic field, 4+M =1,

(4)

are used, where Q =K„/2+M is the quality factor,

6 =JA/K„ is the width of a static Bloch wall, 2 is the
exchange coupling, and K„ is the uniaxial anisotropy

where in the Bloch configuration (p = ~ z/2),

a'-I/(Q —H, ), P'=H, /(Q —H, ), (7)

while for the Neel configuration [&=0(mode)], Q has to
be replaced by Q+1 in (7) and in all subsequent expres-
sions.

It is convenient to introduce the reduced field h =H, /

Q, which in laboratory units has the value H, /(2K„/M)
for the Bloch case and H, /[(2K„/M)+4aM] in the Neel
case. The solution (6),(7) is plotted in Fig. 1 for several
values of h. The local structure represents deviations of
the magnetization from the fully opposed direction,
where the departure is sideways (p = + tr/2) in the Bloch
case. For very small fields, h « 1, a region of magnetiza-
tion parallel to the outside field appears, which is delim-
ited by a mirror-symmetric pair of Bloch walls.

The integrated magnetization of the struction (6), i.e.,
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FIG. 1. Static magnetization configurations for equidistant
values of the reduced external field h -H, /Q.

FIG. 2. Energy 8, deformation energy 8d.f, and integrated
magnetization At as dimensionless functions of the reduced
external field h =H /Q. -

the difference from the fully opposed alignment, becomes

1
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The energy of the structure is
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We shall see immediately below, however, that the field

H, cannot be used to keep the system in the correspond-
ing state.

We now examine the stability of the solution (6),(7).
As variational functions to the solution which belongs to
the field H, we use the solutions for neighboring values

H, . Their energy in the outside field H, is

8H (h) =(Jg/R)(1 —h)' ' H, JK(h)—, (14)

where h =H, /Q. Then the first and second derivatives of
(14) give for 0 & h & 1,

Cd, r
—H, At, (io)

8=(2Jg/3lt)(1 —h) + (i2)

For h 0, 8 JQ/x, which is the energy of two Bloch
walls; the divergence of JK = (I/2z JQ )ln(4/h) is due to
the reversed magnetization between the two Bloch walls.
The energy of the structure 8, the deformation energy

f and the integrated magnetization Af, are plotted as
dimensionless functions of the reduced external field h in

Fig. 2.
Since 8 contains the Zeeman energy —H, At, it plays

the role of an enthalpy C(H, ) of the system in the out-
side field H„while the Legendre transformed Cd f(JK)
is the internal energy. Thus

M (H, ) 88(j f(JK)
aH,

=~
a~ (i3)

where

gd f
= ( i/Q/z) i/I —h = (JQ/z)tanh(x JQ JK) . (I 1 )

Note that g is positive for 0 & h & 1. For h 1 the de-
formation energy 6d, ~ is canceled by the first term of an
expansion of the Zeeman term —H, A, , so that

This proves the instability of the solution (6),(7).
Since there are also configurations of higher energy near
this solution (for example, pW+' m/2 in the Bloch case),
the energy has a saddle point in function space at this
solution.

For nucleation processes the model example is the wa-

ter droplet in supersaturated vapor. It is known that
there is a droplet radius at which the system is in ther-
modynamic equilibrium. This, however, is unstable: a
smaller drop shrinks, while a larger drop grows. An
analogous situation holds for the solution (6). It is a nu-

cleation configuration for the magnetization reversal and
8(h) is the nucleation energy. A neighboring config-
uration belonging to h & h will expand, while for h & h it
will shrink. Of course, in neither case will the time de-
velopment follow the series of functions of the form (6);
in particular the first Landau-Lifshitz-Gilbert equation
(5) implies that 0 =0 for constant p =0(mode/2).
When the magnetic field is near the value h=l, the
motion of the two separated Bloch walls will be beyond
the range of the Walker solution' unless Q & a/2, which
is not typical. In the case that h & 1, the energy CH (h)
given by (14) with 0 & h & 1 is negative, so that a spon-
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taneous creation of these structures is energetically possi-
ble. Note that the Neel case is not relevant to the above
discussion, since with increasing magnetic field, h =1 is
reached first in the Bloch case.

Several mechanisms of magnetization reversal have

been discussed. ' At low fields Bloch-wall motion dom-
inates. Nucleation requires fields approaching or even

exceeding the field h = 1. Since nucleation occurs
throughout the volume, it can be a fast mechanism of re-
versal. A limitation of the present theory is that it de-
scribes planar structures; more complex spatial config-
urations cannot be discarded. Experimentally, nu-

cleation may be observed in fast optical experiments.
Also, the spectrum of Barkhausen noise could distinguish
this from other reversal mechanisms.
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