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Collapse of Integer Hall Gaps in a Double-Quantum-Well System
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For coupled double-quantum-well systems in which tunneling is important, the symmetric to antisym-
metric energy gap leads to a quantum Hall effect. In this Letter we show that interaction effects in
strong magnetic fields can destroy this gap, and present a theory which predicts the occurrence or nonoc-
currence of a quantum Hall effect.

PACS numbers: 72.20.My, 73.40.Lq

The quantum Hall effects [integer (IQHE) and frac-
tional (FQHE)1 are remarkable phenomena arising from
the peculiar dynamics of 2D electrons in strong perpen-
dicular magnetic fields. ' The IQHE is related to gaps in
the single-particle density of states comparable to the cy-
clotron energy h, to, . For the FQHE, the gaps in the ex-
citation spectruin are a direct result of the Coulomb in-
teraction between electrons.

Recently interest has focused on the behavior of
double-quantum-well structures (DQWS). These struc-
tures allow the controlled introduction of additional de-
grees of freedom in the third (z) direction. For a pair of
identical quantum wells with interwell tunneling, the
lowest subband states of each well mix to form sym-
metric and antisymmetric states. The symmetric-anti-
symmetric energy gap, hsAs, is controllable and is typi-
cally much smaller than hco„ though comparable to
Coulomb correlation energies (-O. le /epl) in strong
magnetic fields (» 5 T). Herein, /=(hc/eB)'I is the
magnetic length, v 2trl n20 is the number of filled en-

ergy levels, and n20 is the total electron areal density. In
the absence of Coulombic effects and in the strong-
magnetic-field limit (@to„g pttB & hsAs), the excitation
gap at v odd is hsAs and results in a QHE, i.e., an ac-
tivated longitudinal resistivity (p„„) and a quantized
Hall plateau in p„~. The experiments in Ref. 2 demon-
strate that strong magnetic fields can destroy the QHE
at v odd in a DQWS. In this Letter we show that
Coulomb interactions account for this magnetic-field-
driven destruction of the QHE, and present a theory
which reliably predicts the occurrence or nonoccurrence
of a QHE.

In the absence of Coulombic effects at v= 1, the elec-
trons of a DQWS occupy the lowest (symmetric) state

and the pair of wells act as a single well. Coulombic
effects could drastically modify the properties of this
DQWS by mixing antisymmetric states into the many-
body wave function. This would allow electrons within
the same well to be more strongly correlated than elec-
trons in different wells. If the Coulomb energy reduction
per antisymmetric state were to exceed AsAs, the sym-
metric to antisymmetric excitation gap would vanish,
thereby destroying the QHE. If hsAs were held fixed
while Coulomb interactions were increased, at the point
where the energy gap vanishes we would expect a transi
tion to a new ground state with qualitatively different
correlations (very weak interwell and strong intrawell
correlations). The missing QHE plateaus at strong mag-
netic field result when Coulombic effects, which scale as
e /epl tx: JB, drive the DQWS through this transition to
the new ground state.

Our calculation of the phase boundary of the QHE is
based on a single-mode-approximation (SMA) calcula-
tion of the symmetric to antisymmetric excitation energy
of a DQWS. We consider a strong perpendicular mag-
netic field B in order to assume maximal spin polariza-
tion and neglect Landau-level mixing. For the case of
odd integral filling factors and AsAs 0, our results for
the excitation energy are identical to those obtained by
Fertig" using a diagrammatic approach. We find that
the nondispersive excitation d,sAs becomes dispersive
with a minimum energy near kl 1. For sufficiently
small hsAs/(e /epl) and sufficiently large d/l, the mode
goes soft. %e will identify the mode softening with the
disappearance of the QHE gaps in Ref. 2.

The Hamiltonian describing the low-energy excita-
tions of the system when a given orbital Landau level of
a given spin is partially filled is

0= ——~sAsXct. ;+— lI'p(q)p( —q)p(q)+ V (q)cr ( —q)o, (q)] =T+Up+U„.1 1 d q
(2tr) '

In Eq. (1) we have assumed that there is negligible overlap between envelope functions centered in opposite wells and
the symmetric-antisymmetric degree of freedom is described in an "isospin" language. Eigenstates of o, with eigenval-
ues ~ 1 are the symmetric and antisymmetric combinations of the single-layer envelope functions and the eigenstates of
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a„with eigenvalues ~ 1 are the single-layer envelope
functions, p(z) and p(z —d). In Eq. (1), AsAs/2 is the
hopping matrix element between wells, Vp(q) =[V&(q)
+ VE(q)]/2 and V„(q) =[V&(q) —VE(q)]/2 with

p oo

Vg (q) = dz dz'y2(z)y2(z')e qlI~ z'I—
pq Q —oo

2 f+ oo

VE(q) = dz dz'&2(z)lll2(z' —d)e ql' ' I . (3)
@q J —oo

Also,

p(q) =+8;(q)

is the projection of the total density operator onto the
lowest Landau level for particles with in-plane coordi-
nates r;. Similarly, (~-«) IHol~-«)) =E.+.«), (10)

tern and s ~ (k) = [c7,(k) ~ ic7~(k)]/2. Recalling that

8; (kl )8( (k2) =8i (kl +k2)exp( —l k l k 2/2),

it is easy to verify that l@-(k)) is normalized. The full
Hamiltonian can be separated into a term which con-
serves S,"' (Hp), and terms (H ~ ) which change 5,"'

by
2, 1.e.,

Ho =T+Uo+ — V„(q) [s+(—q)s (q)
1 d q

(2lr) '
+s ( —q)s+(q)], (&)

H+ =— V„(q)s+ ( —q)s+ (q) .
I ' d'q

(2z) '
Using the spin-commutation relations, a tedious but

straightforward calculation yields

a.(q) =g cr„8;(q) (s) where Ep=(+plHpl+p) and

&2k '/4

(k)&= s-(k)lep&. (7)

Here l+p) is the fully polarized ground state of the sys-
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is the projection of the operator for the density difference
between the two layers onto the lowest Landau level. In
the narrow-layer limit Vz (q) 22re /epq and VE (q)

Vz(q)e q . Because of overall charge neutrality, we

may take Vp(q-0) 0. On the other hand,

V„(q=0) =me d/ep

is nonzero and the q 0 term in U„describes the capaci-
tative energy associated with charge transfer between the
two wells. For the Landau-level index n&0, Vp(q) and

V„(q) must be multiplied by [L„(l q /2)], where
L„(x) is a Laguerre polynomial.

Previous theoretical studies of two-layer systems have
focused on the limit where dsAs =0. In this limit, the
x component of total isospin (5„"'),corresponding to the
difference in the number of electrons in the two layers, is
a good quantum number. In such a system it has been
demonstrated that electron-electron interactions can
produce incompressible states with excitation gaps and
hence be responsible for a quantum Hall effect. When
the hopping term is added to the Hamiltonian (hsAs&0),
5„"' is no longer a good quantum number and, for
suf5ciently strong hsAs, these incompressible states will

be destroyed. Herein we focus on the limit where h, sAs is
large and must be incorporated into the theory from the
beginning.

Our calculation of the collective-mode energy associat-
ed with the symmetric to antisymmetric excitation, a
type of magnon mode in our spin description, is based on
the single-mode approximation in which the isomagnon
wave function is given by

V (k)
—l2k2/2.«) = ~sAs+

2lrl
~ d2 —l~q'-/2

+ q [V, (q) h (k+ q) —Vp(q) h (q) ]
(2n) '

2 l'q '/2—
V ( )h( ) il'q (i&&k)() 'q q

In Eq. (11), h(q) =h(q)exp(l q /2) and h(q) is the
Fourier transform of the pair-correlation function. For
V„O these results reduce to those obtained previously.

The various terms in Eq. (11) have clear physical in-

terpretations. The first term is the bare symmetric to an-
tisymmetric excitation energy while the second is a Har-
tree correction associated with the spin-dependent part
of the interaction. The third term is the difference be-
tween the self-energies of an antisymmetric and a sym-
metric electron in the presence of a correlated state of
symmetric electrons. For nearby layers, V„(q)((Vp(q),
the exchange energy of the excited symmetric electron
will be small, and the self-energy difference will be large
and positive [h(q) is negative]. On the other hand, for
well-separated layers, the self-energy difference is small.
Physically this occurs because the symmetric to antisym-
metric excitation does not alter intralayer correlations
and only intralayer correlations are energetically impor-
tant at large layer separations. The fourth term in Eq.
(11) represents the excitonic attraction between the an-
tisymmetric electron and symmetric hole, separated by
1 z&k. This excitonic term involves intrawell interac-
tions and so it remains strong even for large layer sepa-
rations. Thus for large layer separations and kl~1,
e(k) can become negative. The Coulombic gain in in-

tralayer interactions can exceed costs in hopping energy
and interlayer correlation energy, leading to a collapse in

the excitation gap and hence in the QHE based on a ful-

ly polarized state.
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This system may be approximately described in terms
of the isomagnon collective degrees of freedom. The
efI'ective isomagnon Hamiltonian is

result that the spin-excitation energies are given by

Z(k) =4'(k) -~'(k) j'" (14)

H, Eo+g[bItbte(k)+ i k(k)(blab —g+bab -k)],

~(k)- ' V„(k)e-"""
2xl

d2
+ q, -I q /2eil q (i&I,)y (q)$(k q)

(2z) '
(13)

The second term can be understood as an exchange con-
tribution to the isomagnon interaction energy. H, can be
diagonalized by a Bogoliubov' transformation with the

4
I I I I

[
I I I I f/ I I I I

2

dB = 5'1A

+SAS

(12)

where Ho is described by the free-boson piece ggbitbqag
and the terms proportional to X(k) approximate H+
+H . We choose X(k) to reproduce the exact result for
the matrix element of H betwe—en zero- and two-

magnon states, which leads to

In order to make a comparison with the experimental
results of Ref. 2, we consider the case of a fully filled en-

ergy level (v=1) and for the moment neglect finite-
thickness corrections. We associate the vanishing of the
excitation gap with the loss of a QHE to obtain the
phase boundary of the incompressible state (solid curves
in Figs. 1 and 2). In this simplified model, the boundary
depends only on the dimensionless variables d/I and

&sAs/(e /col). The data for the three different samples
of Ref. 2 are placed in the figures by choosing d as the
center-to-center distance between the wells and d,sAs to
be the experimentally measured gap at zero field. Solid
circles, labeled by filling factor, indicate the observed
IQHE states, while open circles indicate the missing
IQHE states reported in Ref. 2. Note that v=1, 3 corre-
spond to the lowest Landau level (Fig. 1) and v=5, 7
correspond to the second Landau level (Fig. 2). (Data
for v even are not shown since the bare energy gap is

not AsAs, but g tug8 for v 2, 6 and hcu, for v 4, 8.
These gaps are never destroyed by the Coulombic effects
analyzed here. ) We see that our theory with no adjust-
able parameters describes the principle experimental
trend that the QHE is more easily destroyed by strong
magnetic fields for samples with wider barriers. If the
finite width of the wells were taken into account, the in-

trawell interaction, which favors collapse, will be weak-
ened and the effective layer separation will be reduced.
These effects can be modeled by approximating p (z)
equal to 1/d~ in a well of width dpi. The dashed lines in

the figures give the phase boundary for this model with

dii /d 0.75. (The experimental values of de /d are 0.83,
0.78, and 0.73 for the da =28, 40, and 51 A samples. )
As the figures show, this simple correction for finite well
widths removes most of the discrepancy between theoret-
ical and experimental phase boundaries.

0
0

~ dIAI dBI dIAI
~

I I I l I I I I I I

0 1 0.2
h, sAs/(e /6'og}

FIG. 1. Phase diagram for the quantum Hall eAect in a
double quantum well (shown in the inset). AsAs is the sym-
metric-antisymmetric energy gap, 1 d~+d& is the interwell
spacing, and I (hc/eB) '~ is the magnetic length. The heavy
solid line is the calculated phase boundary of the n =0 Landau
level for collapse of the energy gap above the incompressible
state. The dashed line includes our approximate finite-well-
thickness correction. The experimental data for v=1 and 3
from the three samples of Ref. 2 are represented by open and
solid circles which denote the missing and observed QHE
states, respectively. The arrows indicate increasing magnetic
field for a given sample.
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FIG. 2. Same as Fig. 1, for the n 1 Landau level. The
data for v 5 and 7 are shown.
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We believe that the agreement shown in Figs. I and 2
demonstrates that our theory captures the important
physics of the observed collapse of the QHE in the
DQWS at high magnetic fields. We are unable to quan-
titatively explain the observed magnetic-field dependence
of the activation energies at v=odd reported in Ref. 2,
but believe this dependence is due to increased mixing of
orbital Landau levels by the Coulomb interaction at
weaker magnetic fields. In our calculations, only elec-
trons in the highest occupied energy level take part in

correlations. In this case, the electron charge is spread
out in the plane over a distance set by the magnetic
length l. In the presence of increased Landau-level mix-

ing at lower magnetic fields, it is possible for the electron
charge to become more localized in the plane. As a re-
sult, intralayer correlations will lead to larger reductions
of the Coulomb energy and greater suppression of the
symmetric-antisymmetric energy gap.

We have not addressed the case of fractional filling
factors here. However, we believe that the phase dia-
gram for the FQHE could be extremely rich. For exam-

ple, along the d/l=o line of the phase diagram, the in-

teraction is spin independent and the physics is equiv-
alent to that of a two-spin system where hsAs plays the
role of a Zeeman energy. It has been observed that
phase transitions occur at some fractional filling factors
between states with diff'erent isospin polarization. "'
On the other hand, the AsAs=0 limit in the phase dia-

gram corresponds to the situation in which there are a
definite number of electrons in each well. In this case, it
is known that phase transitions can occur as a function
of 1/I between different generalized Laughlin' states of
the type proposed by Halperin. It is clear, then, that
the phase diagram in the fractional regime will contain
regions of FQHE's based on different ground states.
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