VOLUME 65, NUMBER 1

PHYSICAL REVIEW LETTERS

2 Jury 1990

Density-Functional Study of C, Si, and Ge Metallic Liquids

M. W. C. Dharma-wardana " and Frangois Perrot "¢’

DInstitute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106
@ Division of Physics, National Research Council, Ottawa, Canada K1AOR6 ™
O)Centre d’'Etudes de Limeil-Valenton, B.P. 27, 94190, Villeneuve St. Georges, France™
(Received 18 April 1990)

A density-functional study of C, Si, and Ge metallic liquids is reported. Pair potentials are construct-
ed from pseudopotentials which reproduce the Kohn-Sham densities. These lead to structure factors
S (k) in good agreement with experiment, and with more elaborate Car-Parrinello calculations. It is pre-
dicted that liquid carbon has a single sp band, is highly conducting and strongly compressible, with a
broad peak in S (k) located near the “hump” in the S (k) of /-Si.

PACS numbers: 61.20.Ja, 61.25.Mv, 71.25.Lf, 72.15.Cz

Liquid C, Si, and Ge have recently attracted much at-
tention'3 and liquid carbon (/-C) is found to have an
electrical resistivity similar to /-Al.* The vapor phases
contain covalent clusters, as for most metals. Solid C,
Si, and Ge are insulators or semiconductors with co-
valent bonding. The increase in density of Ge and Si on
melting favors the transition from covalency to metallici-
ty. However, the coordination numbers (~6,7) for /-Si
and z-Ge are low compared to ~10,12 found in most
liquid metals. The structure factors S(k) of Si and Ge
are also unusual®> in having a main peak of height ~1.5
compared to, say, ~—2 in most metals, together with a
hump (shoulder) on the high-k side of the main peak, at
k~1.8 a.u.”'. Many authors have considered these to
be signatures of covalent structures persisting in the
fluid. Ashcroft? has argued that a consistent picture of
the S(k) of /-Ge could be constructed even from an ex-
treme model where the fluid is assumed to contain tran-
sient Gey clusters with fast exchange, rather than indivi-
dual Ge** ions, while suggesting that the actual situa-
tion may be somewhere in between this limit and a mod-
el of diffusively free ions. In Ashcroft’s picture, the
shoulder in S(k) is mainly a manifestation of the inter-
nal modes of Gey4, while the main peak arises from a syn-
thesis of hard-sphere-type correlations among the Gey
clusters and the internal cluster structure. Recent Car-
Parrinello- (CP-) type molecular-dynamics (MD) stud-
ies' support the existence of such transient structures in-
volving several ions. However, a systematic study of a
simple-metallic model for C, Si, and Ge is of interest.

In this Letter we report a study of /-C, /-Si, and /-Ge
using density-functional theory (DFT) within the local-
density approximation (LDA), using approaches valid
for simple metals and plasmas. In the spirit of DFT we
assume that the displaced electron density An(r), or its
Fourier transform An(g), due to an ion in jellium deter-
mines the pseudopotential Vi (gq). This V;, and the
electron-gas response function x(q,r;) define a “second-
order” pair potential U(g) valid in the linear response
(LR) regime. The pair potential can be used in MD or

in an integral equation, e.g., the modified hypernetted
chain (MHNC) equation,® to generate the S(k) and the
pair function g(r) of the fluid. Figure 1 shows the re-
sults of such calculations for liquid C, Si, and Ge. The
calculations for carbon were at a density 2.0 g/cm’®
(Wigner-Seitz radius rws=2.5236 a.u., electron sphere
radius r, =1.5898 a.u., and temperature 7=5000 K).
Liquid Ge with rws=3.2703 a.u., r, =2.0602 a.u., and
T=1256 K, and liquid Si with rws=3.0727 a.u,,
rs=1.9357 a.u, and T=1733 K are at their melting
points. Figure 1 shows theoretical curves for C, Si, and
Ge and Salmon’s® neutron data for S(k) of Ge. The
high-k shoulder at k = 1.8 a.u. ~' in /-Ge becomes more
pronounced in /-Si and finally becomes the main peak in
the S(k) of I-C. The broad first peak in the S(k) of car-
bon corresponds to a narrow peak in the g(r), where the
first and second maxima occur at 2.6 and 5.2 a.u., in
good accord with the MD results of Galli ez al.'
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FIG. 1. Calculated S(k) of /-C, [/-Si, and /-Ge.
Salmon’s (Ref. 3) experimental S (k) for /-Ge.
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The DFT An(g) is calculated via a construction of the
neutral pseudoatom for the ion in a cavity embedded in
jellium.” However, unlike in a CP calculation,' only a
single-center radial Kohn-Sham equation is solved. Thus
multi-ion effects are neglected. Figure 2 shows the dis-
placed density An(q) calculated from LDA DFT for car-
bon and silicon. Ge** is similar to Si**, and is not
shown. The DFT An(g) for both Si** and Ge** (but
not C**) can be modeled quite well by the LR form
An(g) =—2ZV,cos(qRo)x(q,r,), where atomic units are
e=h=m,=1, and V, =4n/q?, Z=4. x(q,r,) contains
the LDA local-field correction G(q,r;). The empty-core
pseudopotential V. (g) = —ZV,cos(qgRo), and contains
the radius R, determined by fitting to the DFT An(g).
The pair potential U(q) is Z*V,—V,(g)*x(q). Previ-
ous work® has shown that /-Ge can be extremely well
modeled with such a simple V;, and an effective response
function x(q,rs*) evaluated at the effective density pa-
rameter r¥, with the effective mass m™* =r*/r, = 1 (full
definitions of functions with r* are given in Ref. 9). Fig-
ure 2 shows, for Si, the simplest “‘nonoptimized” LR
description (squares) where m* =1 and Ry is deter-
mined from the first zero in the DFT An(g). Compar-
ison with the DFT An(g) shows that even the “nonop-
timized” description is quite good and LR is valid for Si.

A simple way’ of constructing a pseudopotential from
An(qg) is to define an effective linear pseudopotential
W (q) =An(q)/x(q). This uses the full information con-
tained in the DFT An(q) rather than the part of An(q)
consistent with a given fitting model. Both W(gq) and
Vie(q) lead to similar results in the linear regime. In
fact, the theoretical S (k) for Si shown in Fig. 1 was ob-
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FIG. 2. The DFT An(q) for Si** and C** are compared
with pseudopotential predictions. Squares: LR An(g) for Si
with Ro/rws=0.3084. The curve “scaled Si” shows that the
An(g) of Si can be simply scaled to give the An(g) of C for
q <2kr. Triangles: QLR An(g) for pseudo-carbon. Inset:
DFT An(r) and QLR An(r) in r space for carbon.

tained from a U(g) constructed from W(q).

The DFT An(r) for C** is different from those of
Ge** and Si**, owing to the very small core size of C**.
The DFT An(r) of C contains an s (/=0) and a p (/=1)
component. LR is not expected to be valid a priori in
this case. The linear pseudopotential W(q) defined from
the DFT An(g) of C** changes character sharply near
2kr, unlike in Si or Ge. This suggests that more ela-
borate forms of V. (e.g., nonlocal forms, etc.) would
perhaps be useless. Density-of-states calculations for
C** (see below) show that carbon has a single sp band.
Hence we assume that the nonlinearity of the electron
response rather than the nature of the pseudopotential is
most crucial. To support this, Fig. 2 shows that the DFT
An(g) of C**, viz., Anc(q), is very similar to Ans;i(g) in
that Ans,(g) can be trivially scaled to give ANc(g) by
replacing g by fgq, f~1.55, for ¢ <2kr. Thus for small
g, the typical momentum scales of the problem are
redefined while the electron-ion interactions in /-C
remain similar to those of Si** and Ge**. Thus we ex-
pect the simple V;. to work even in the case of C** but
with a y(g*,r¥) containing r* and a ¢* reflecting the
change of g scales. In effect, the electron gas in /-C
behaves, for small g, i.e., for long-range interactions, as
if its effective density were lower than the nominal densi-
ty. The triangles in Fig. 2 show the An(g) for C** cal-
culated from V. and a scaled y(g*,r*), obtained by op-
timizing Ro, m*, and f such that ¢* =qf to fit the DFT
An(g). The values of Ro, m*, and f were 0.3672 a.u.,
1.6585, and 1.1758, respectively. This three-parameter
description of the DFT An(q) reproduces the DFT densi-
ty not only in q space, but also in r space (inset of Fig.
2). Of course, very-large-q or very-small-r (core) re-
gions are not fitted. The results shown in Fig. 2 imply
that the DFT An(g) of C** can be represented by a
quasilinear response (QLR) form although standard LR
fails. Given the stringency of the requirement that the
charge densities in g space and in r space have to be
recovered to high accuracy, we believe that the present
approach to modeling the DFT charge density is not just
an arbitrary procedure, but a meaningful generalization
of the LR approach.

The pair potentials U(r) are shown in Fig. 3(a). In
Ge we have included a core-core polarization term
AU(r), = —0.75w0a*(0)/ | r2+r2|, where wo=1.22
a.u. and ¢ =6.748 a.u.> A cutoff radius r. was used and
AU(r), was verified to be independent of r. for
rd/rws=1.0 or r./rws=0.5. The core-polarization term
has the effect of slightly increasing the main peak in the
S(k) of Ge. Figure 3(a) shows that the pair potentials
of C, Si, and Ge are very similar except for the very
small core size of C**, defined by the steep wall of the
C-C potential. Figures 3(b) and 3(c) compare the Ge**
pair potential with the Dagens, Rasolt, and Taylor'®
(DRT) potential for /-Al near the melting point for
which rws=3.121 a.u., r,=2.164 a.u., Z =3 and which
resembles /-Ge (rws=3.27, r, =2.06, Z=4). The DRT
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FIG. 3. (a) Pair potentials for liquid C, Si, and Ge at 5000,

1733, and 1256 K, respectively. (b),(c) Comparison of the Ge
pair potential with the DRT potential of /-Al

pair potential has a positive ledge of about 0.5k T near
r/rws~2.0, and a negative minimum of about 0.15kpT
near r/rws=2.7. The positive ledge at 0.5kpT,
r/rws—~?2 defines the first-neighbor position and the Al
S (k) shows a single maximum near krws~4.5. In the
U(r) of I-Ge we have, as in Al, a ledge but at about
2kpT near r/rws—~2, and a negative minimum of
0.15kpT near r/rws~2.3. Unlike in Al, the competing
negative minimum and the positive ledge lead to a weak-
ened maximum in S(k) of Ge at krws~4 and a hump,
arising from the positive ledge, at krws~5.5. The split-
ting of the ions between two locations reduces the coordi-
nation number from the usual ~10,11 (as in Al) to the
~6,7 found from the area under the first peak in the
g(r) of Ge**. The main peak in S(k) of /-C is broad
and it arises from the sharp Friedel oscillation at
r~rws. The calculated S(k— 0) implies that /-C is
highly compressible since S(0) is ~0.36 compared with
~0.03 for /-Si. Hence a measurement of the compressi-
bility of /-C would be very useful. The predicted high
compressibility of /-C needs comment since /-C is a
liquid with an r;=1.6. It was shown that the electron
response behaved with an r* = 2.64. Further, the hard
wall of the C-C potential occurs (Fig. 3) at r=rws and
hence the equivalent hard-sphere liquid has a packing
fraction n=0.1 and a compressibility very close to our
S(0).

S(k) for I-Si calculated using the MHNC equation®
agrees quite well (Fig. 4) with the MD results of Ref.
1(b), and both agree with x-ray data> to about the same
extent. The long-dashed curve shows the S(k) obtained
using the Stillinger-Weber'' (SW) potential containing
two-body and three-body terms, and cut off to zero be-
tween the first- and second-neighbor distances. The pair
potentials used by us are by contrast very long ranged, as
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FIG. 4. Calculated S(k) of /-Si compared with the MD re-
sults of Ref. 1(b), Ref. 11, and x-ray data (Ref. 5). The MD
points were obtained by enlarging Fig. 1(a) of Ref. 1(b) and
Fig. 6 of Ref. 11.

dictated by the physics of Friedel oscillations in an elec-
tron gas. SW-type potentials''*!? have a phenomenologi-
cal form with many parameters fitted to theoretical over-
laps, bonding energies, and structural properties. Biswas
and Hamann'? use eighteen parameters, and the SW po-
tential has eight parameters, while the Si potential used
for the S(k) of this work has no adjustable parameters,
but is specific to the density and the material. Unlike in
our “metal physics” approach, the method of Refs. 11
and 12 deliberately ignores the structure-independent
form of the “‘electron-gas” term in the total energy E
and fits E to a multibody potential which is short ranged
by choice. The diamondlike structure typical of C, Si,
and Ge is not stable under short-range forces and multi-
body terms are needed in short-range interaction models.
While these short-ranged multibody potentials have their
merits, e.g., in simulations, so far the errors, even in
properties which depend on mere quadratic displace-
ments from equilibrium, like the elastic constants (30%
error with SW for Si) and the optical-phonon frequency
(17% error), tend to be too high.'> However, the
multibody-potential concept is closer to the transient
cluster picture. Contour plots of electron density in /-Si
shown in Ref. 1 are suggestive of transient covalent
bonds. It is likely that a CP-type MD study of /-Al
might lead to similar plots, although /-Al is hardly con-
sidered as a fluid containing transient covalent clusters.
The nonlinear electron response in C implies that the
displaced charge density near two C ions would not be
the simple superposition of individual charge densities.
Such a superposition assumption is implicit in the scaled
QLR model used here. A quantitative picture of the
inadequacies of the single-center calculation is obtained
from Fig. 5 where the density of states N(e) obtained
(from the DFT phase shifts) is compared with that of
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FIG. 5. The electron density of states N(g) in /-C calculated
from the DFT phase shifts. Short-dashed line: The free densi-
ty of states No(e). The integrated density of states /() is 4 at
the Fermi energy Er. Inset: CP MD results for Galli et al.
(Ref. 1).

Galli et al.' Both calculations show that /-C has a single
sp band. The stronger localization of electrons found in
the MD calculation of Galli et al.' is also reflected in the
g(r). Although our peak positions and the height of the
second peak of the g(r) of carbon are in good accord
with Galli et al., our first-peak height (~1.6) is low
compared to that of Galli et al. (~2.3). The first peak
in the S(k) of carbon shown in Fig. 1 is likely to be
enhanced if short-range correlations underestimated by
the present one-center model could be included.

Using the Vj,, ¥, and S(k) derived from them using
the MHNC equation, the electrical resistivities p can be
calculated from the Ziman formula. We obtain 80.6,
22.7, and 28.4 1 Qcm for the resistivity of C, Si, and Ge
liquids, to be compared with the experimental values of
30-70 u Q@ cm reported* for /-C and 80.6 and 70 uQcm
for /-Si and /-Ge, respectively.'* The underestimate in p
for Si and Ge is similar to that of Ashcroft and
Lekner.'> We pointed out that in Si and Ge, unlike in
Al, the coordination shell is split between two competing
sites. Thus additional scattering effects would be impor-
tant in /-Si and /-Ge. Further, Fig. 5 shows that the
one-center model for /-C underestimates electron locali-
zation in comparison to Galli et al. The CP-type calcu-
lations' give a p of 57-120 for /-Si and 140 + 28 uQcm
for /-C and seemingly overestimate electron localization.

In summary, we have shown that the static structural
aspects of both liquid Si and liquid Ge can be described
quite well by very simple pseudopotentials and response
functions. In /-C the nonlinear electron response could

be modeled by a simple quasilinear form. We predict
that /-C is a highly compressible liquid with a weak
broad first peak in S(k) near 1.76 a.u. ~' and a stronger
peak near 2.7 a.u. .
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