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Critical Properties of Viscoelasticity of Gels and Elastic Percolation Networks
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Two superelastic percolation models are proposed to explain the observed behavior of the viscosity g of
gels near the gel point. The elastic moduli G of one model diverge at the percolation threshold p, with a
critical exponent r given by r v —Pr/2, where v and P~ are the critical exponents of percolation correla-
tion length and the strength of the infinite cluster, respectively. We propose that this system can model
the behavior of g in the Zimm limit. In the second model, which we propose to be appropriate for the
Rouse limit, G diverge at p, with an exponent r' 2r. Large-scale simulations confirm these scaling
laws. The experimentally observed deviations from these scaling laws are also discussed.
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The viscoelastic properties of gels are of great practi-
cal importance, and have received considerable experi-
mental and theoretical attention. '2 The gelling solution
at the sol-gel transition has unique and unusual proper-
ties: Its viscosity rl is infinite, whereas all of its elastic
moduli G are zero. The original treatment of this
phenomenon by Flory3 is in fact a complete solution of
the percolation problem on the Bethe lattice. Stauffer
and de Gennes' emphasized the importance of devia-
tions from Flory's solution, and proposed to replace it by
the more general percolation models on finite-di-
mensional lattices. In particular, de Gennes proposed
that, close to the gel point (GP), the elastic moduli of
the gel and the viscosity of the sol are directly related to
the conductivity o of a percolation network of random
resistors, and of random superconductors, respectively.
Consider a percolation network in which a fraction p of
bonds has a conductance a, while the rest of the bonds
have a conductance b. If a 1 and b 0, then, near the
percolation threshold p„one has a-e", whereas if
a ~ and b 1, tr e', -where e =

~p
—p, ~. de

Gennes's suggestions are equivalent to saying that, near
the GP, G vanish according to a power law characterized
by the exponent p, whereas rl diverges with the exponent
s. The most recent experimental data indicate that 6
vanish with an exponent in the range 3.5-3.8, whereas
for three-dimensional (3D) systems, '

p =2. To explain
the behavior of 6, percolation models have been suggest-
ed" ' in which each bond of the network is an elastic
element which can be stretched and bent. Simulation of
this model in 3D has shown that, ' near p„ the elastic
moduli of the system vanish with an exponent f=3.8, in

good agreement with the experimental data, and in fact
it has been proposed' that f=p+2v, where v is the ex-
ponent of percolation correlation length (-e ", and
v(d 3)=0.88. However, the situation for rl is not clear
yet. Experimental measurements indicate that near the
GP, g diverges with an exponent k, the value of which is
either' ' in the range 1.3-1.5, or is ' mostly in the
range 0.6-0.8 (there are some data indicating deviations
from the latter range; this is discussed below), whereas
for 3D systems, s=0.735. While some scaling theories

have been advanced, ' ' 3 no appropriate model has
been proposed to predict the peculiar behavior of rl and
k. In this Letter we propose two percolation models to
explain the behavior of the viscosity exponent k, relate k
to the percolation exponents, perform large-scale com-
puter simulations to test the models, and compare our re-
sults with the experimental data.

To begin with, we contend that the behavior of o in
percolation networks has no relation with that of rl near
the GP because, in general, the rotation and deformation
of finite polymers in local viscous shears should make k
smaller than s. Such deformations and rotational mo-
tions also make the field equations for cr totally different
from those for rl. Indeed, rl is related to a tensor quanti-
ty (complex shear modulus), whereas o is a scalar quan-
tity and, therefore, there is no reason to believe that rl

and o should have the same scaling behavior. As an al-
ternative view, we propose that the behavior of rl near
the GP is similar to that of the shear modulus tc of an
appropriate elastic percolation network (EPN), to be
defined below, near p, . Consider an EPN in which the
elastic energy E is given by" '

E-—g[(u; —u/) r;, ]'g;, +~ g (b8J;k)'g;, g;k,
&ij&

' ' '
(jik&

where u; is the displacement of site i, r;j. is a unit vector
from i to j, and g;J is a random variable which takes the
values a and b with probabilities p and 1 —p, respective-
ly. Here (jik) indicates that the sum is over all triplets
in which the bonds ji and ik form an angle whose vertex
is at site i, a and P are the stretching-force and bond-
bending-force constants, respectively, and 88~;k is the
change of angle between bonds ji and ik. In the limit of
a =vv and b =1, one obtains a superelastic percolation
network (SEPN) in which tc diverges ' according to
the power law

a-- (p —p, ) (2)
Theoretical considerations indicate that for 2D and 3D
systems, r & s, although published numerical re-
sults ' ' for r(d 2) do not consistently confirm this
prediction; no estimate of r(d =3) has yet been reported.

To relate the critical properties of x to g, we consider
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two limiting cases. The first case is the so-called Zimm
limit, ' in which there are strong hydrodynamic in-
teractions between monomers and also the polymers of
various sizes. Since there are large polymers (clusters)
near the GP, the strong hydrodynamic interaction
hinders diffusion of the polymers in the reaction bath
and, therefore, there is no significant polymer movement.
Thus the behavior of the system in this limit may be de-
scribed by a static percolation network. However, con-
trary to the previous suggestions which invoke an
analogy between g and cr, we propose that, in this limit,
ri is analogous to the shear modulus of a static SEPN
whose energy is given by Eq. (1) and, therefore, k =z.
We now estimate z by large-scale Monte Carlo calcula-
tions.

To estimate r we use finite-size scaling analysis
(FSSA) according to which, for a percolation network of
linear dimension L at p„one has

rc-L"(I +a ~g~ (L) +a2g2(L) l, (3)
where x z/v. Here g~(L) and g2(L) are, respectively,
the leading nonanalytical and analytical corrections to
scaling, which are important for small to moderate
values of L. To calculate x we minimize E with respect
to u; and solve the resulting set of linear equations for
u s by the adaptive accelerated Jacobi-conjugate gra-
dient method. Calculations were done on a simple-cubic
network at p, =0.249, and the statistics of the simula-
tions are given in Table I. The results, which were fitted
to Eq. (3), are shown in Fig. 1. Various forms for g~(L)
and g2(L) were tried in order to find the most accurate
fit to the data, which we found to be provided by
g~(L) =(lnL) ' and g2(L) =L '. From Fig. 1 we ob-
tain z/v=0. 74~ 0.04, which means that

v=0.65+ 0.03. (4)
This value of z is consistent with those experimental data
for k which are' ' mostly in the range 0.6-0.8 (see also
below).

Two points are worth discussing here. According to
Eq. (4), z(s, which is consistent with the theoretical
predictions. ' The second point concerns the relation be-
tween z and the standard percolation exponents. Several
authors ' have used scaling arguments, some of
which are based on the analogy between the conduc-
tivity of superconducting percolation networks and ri,

and have derived the following relation for s:
s =v Pp/2, (5)

TABLE I. Number of realizations for each network size L
for simulations at p, for the Zimm limit.

6 9 12 15 18 20

where P~ is the critical exponent of the strength P(p) of
the infinite cluster near p, ; P(p)-e '. Since P~(d=3)Pp

=0.43, Eq. (5) predicts that s=0.66, in disagreement
with the latest simulation estimate of Normand and
Herrmann, s =0.735 + 0.004. Moreover, since
v(d =2) = —', and P~(d =2) = 3'6, Eq. (5) predicts that
s = » =1.26, whereas simulations yield s =1.297
+ 0.03. On the other hand, if we use Eq. (5) to estimate
z (i.e., invoke an analogy between x and g instead of a
and g), we find that z(d=3) =0.66, in complete agree-
ment with (4). To further test the validity of Eq. (5) for
estimating z, we also determined z for 2D networks. We
used a square lattice, determined v at p, 0.5, and es-
timated z using FSSA. The statistics of the simulations
are presented in Table I, and the results are shown in

Fig. 2. We found again that g~(L) =(lnL) ' and

g2(L) L '. From Fig. 2 we obtain z/v=0. 92~0.03,
which means that

v=1.24+ 0.03 (6)
which again agrees with z v —P~/2. Moreover, Eq. (5)
predicts that for 1D systems z 1 (exact), and for d ~ 6,
which represents the mean-field limit for the percolation
problem, one has z 0 (i.e., x diverges logarithmically),
which agrees with the exact solution of the problem on a
Bethe lattice. Note the small difference between z and s
in 2D. Previous estimates ' ' of z in 2D could not
detect this small difference, presumably because finite-

size effects were ignored in these works. According to
Limat, ~6 the eccentricity of elastic percolation clusters,
which measures the strength of a coupling effect between

displacements and rotations, tends to rigidify the clus-

ters, giving rise to the difference between z and s.
Therefore, we propose that for the Zimm limit k z

0 = 0.02P
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FIG. 1. Variations of the shear modulus x. of the static su-

perelastic network with the linear size L of the network at the
bond percolation threshold p, of the simple-cubic network.
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FIG. 2. Variations of x of the static superelastic network
with the linear size L at p, of the square network.

where, for 1 ~d~6,
v Pp/2 . (7)

Consider now the Rouse limit, which is the opposite
of the Zimm limit. In this case there are no hydro-
dynamic interactions between the various polymers
present in the reaction bath. Polymers of comparable
size cannot overlap but, because of the absence of any in-

teraction, they can diffuse essentially freely throughout
the reaction bath. Diffusion of a given cluster can be de-
scribed by the Stokes-Einstein formula, but in a medium
with a size depend-ent viscosity. ' ' A polymer larger
than the correlation length feels the bulk viscosity, and
the smaller polymers have a finite viscosity. For this
case it has been shown that'

k 2v pp, (8)
which had also been conjectured earlier ' based on vari-
ous analyses. We now propose a SEPN for the Rouse
limit, in which x diverges at p, with an exponent r'=k,
where k is given by Eq. (8). Similar to the Zimm limit,
we consider a SEPN below p„ in which a fraction p of
bonds are totally rigid (gj =~). Below p, there is a
large (but finite) rigid cluster, whose radius of gyration
R is comparable to g, and for which x depends on R.
There is also a wide distribution of smaller rigid clusters
which represent polymers of various sizes. Similar to the
Zimm limit, the bonds with g;~ =1 represent the sol
phase. Since in the Rouse limit the absence of hydro-
dynamic interactions between the polymers allows the
polymers to diffuse in the reaction bath, we similarly al-
low the rigid clusters to diffuse in the network (in the
Zimm limit they were fixed). Each time two rigid clus-
ters touch one another, they temporarily form a larger
rigid cluster which can be broken up again at a later
time. The motion of the rigid clusters in the network is
similar to the diffusion of the polymers in the reaction

bath in the Rouse limit. This is a dynamic network in
which the rearrangement of the rigid clusters gives rise
to an efficient transmission of force and stress throughout
the network. As a result, as p, is approached from
below, the elastic moduli of the network increase and
eventually diverge at p, . Because of this efficiency, the
divergence of the elastic moduli of this dynamic network
is even stronger than those of the static SEPN con-
sidered for the Zimin limit, in the sense of being charac-
terized by a critical exponent z'& z. We now show, by
Monte Carlo simulations, that the exponent z' is the
same as k given by Eq. (8).

To estimate z' we generate, for a given p (p„a
SEPN of size L. At each time step, a randomly selected
fraction of rigid clusters are moved, with equal probabili-
ty, in one of the principal directions of the lattice. Two
rigid clusters cannot overlap. We then calculate x, move
another randomly selected fraction of rigid clusters,
determine tr again, and so on. Computations are carried
out for enough steps until x achieves an essentially con-
stant value. We then generate another realization of the
network, repeat the computations, and average the re-
sults over all realizations. In principle, calculations can
be carried out at p p, and for various sizes L, and z'

can be estimated using FSSA. However, this requires a
very large amount of computer time. Instead, we used a
square network with L =200, and calculated x for
p 0.47, 0.48, 0.485, 0.49, and 0.495, averaged over 50
realizations. The results are presented in Fig. 3, from
which we obtain

r'=2. 50+ 0.15 . (9)
For 2D systems Eq. (8) predicts that k = —'„' =2.53, in
excellent agreement with z'. Thus, if we use Eq. (8) to
estimate z' for 3D systems, we obtain z'=1.33, com-
pletely consistent with the experimental data' ' in the
range 1.3-1.5, which also supports the validity of the
model. Equations (7) and (8) then lead to upper and
lower bounds for k. Since the Zimm and Rouse limits
represent two opposite systems, one has

v —P~/2 ~ k ~ 2 v —
P~ . (10)

Moreover, most experimental data are either close to the
Zimm or the Rouse limit.

We should remark about some experimentally ob-
served deviations of k from the exponents z and z'. Ex-
perimental determination of k (and f) involves measur-
ing the complex shear modulus G*(to) =G'( )+toiG" (to)
at a frequency to, where G' and G" are the storage and
loss shear moduli, respectively. At the GP, G' and G"

predicted ' to scale with ~ as G' —G"—
where 5 =f/(f+k). Strictly speaking, the scaling laws
proposed here are valid only in the limit of co 0,
whereas in practice it is highly difficult to achieve such a
limit and, therefore, the reported values of k are some-
times larger than r. However, we believe that the
difference between k and z (or z') is a transient effect
and recent, more precise, ' measurements of k clearly
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FIG. 3. Variations of x of the dynamic superelastic percola-
tion network with the fraction p of rigid bonds in the square
network.

show a trend towards lower values closer to z or z'. We
should also mention that Martin and co-workers' '
have proposed that f=vd. They also contend that this
relation is derived based on a percolation model. Howev-

er, the predictions of this relation, originally suggested
by Daoud and Coniglio, 34 do not agree with those of
EPNs. For example, it predicts that f(d 3)=2.64, as
compared with' f=3.8 for EPNs. We shall discuss this
in more detail in a future paper.

In summary, we have proposed two SEPNs for model-
ing of the divergence of the viscosity of gels near the GP.
The first model is a static SEPN which may model tl in

the Zimm limit, with a critical exponent z given by
r=v —P~/2. The second model is a dynamic SEPN in

which tr diverges with an exponent r'=2r. This model
may be used to study ri in the Rouse limit. Our results
presented here and elsewhere '5 3 provide a fairly com-
plete description of viscoelastic properties of gels near
the GP. We should mention that there are some experi-
mental data that indicate f=p and k=s. We believe
such systems are still described by an EPN or a SEPN
(instead of a resistor networks) because the analogy be-
tween cr and G, or ri and tr, is inappropriate. However,
the elastic energy of a gel system for which f=p does
not have to be the same as in Eq. (1). For example, for
an EPN with a Born Hamiltonian f=p. As argued by
Alexander, an EPN with a Born Hamiltonian may be
the appropriate model for describing gels which are un-
der external or internal stress. Thus, for those gels for
which f=p and k=s, we must still use an EPN or a
SEPN, except that the elastic energy of the system may
be described by the Born model.
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