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The coherent scattering rate from n particles bound in a periodic lattice of N potential wells is con-
sidered. The quantum theory predicts a total coherent scattering rate proportional to n'/N, whereas the
conventional semiclassical approach predicts a rate proportional to n. These eff'ects allow an experimen-
tal test of certain nonlocal assumptions inherent in quantum statistical mechanics and may be useful in

analyzing the properties of crystalline materials.

PACS numbers: 03.65.Bz, 05.30.-d, 61.12.Bt, 61.70.Wp

The conventional theory' of elastic scattering of in-

cident particles, such as neutrons, by a perfect crystal is

generally based on the semiclassical assumption that the
atoms are bound to fixed sites in the crystal with occupa-
tion probabilities given by various correlation functions
or order parameters. This paper is concerned, instead,
with a more general situation in which n scattering parti-
cles are bound in a periodic lattice of N potential wells

with n ~ N. The scattering particles will also be treated
quantum mechanically, which introduces an intrinsic un-

certainty as to the potential well in which a particle is
actually bound. It will be found that the quantum-
theory prediction for the total coherent scattering rate is

quite different from the semiclassical result and is pro-
portional to n /N.

The quantum-mechanical effects of interest here are
neglected in the usual' semiclassical approach, which
illustrates the observable difference between probabilities
and probability amplitudes. An experimental investiga-
tion of these effects would test certain nonlocal assump-
tions inherent in quantum statistical mechanics, and they
may be of practical use in analyzing the properties of
crystalline samples. The extent to which this simple
model can represent coherent scattering in actual crys-
tals with various defects will be briefly discussed.

The term coherent is defined in may different ways in

various applications, but here a coherently scattered
wave will be defined as one that can be made to interfere
with the incident wave. (Some comments on the experi-
mental observability of coherent versus incoherent scat-

ys (r„)=g a; yw(r„—x;), (2)

tering will be made shortly. ) It should be emphasized
that the coherent scattering is generally a small fraction
of the total scattering, and that the latter is simply pro-
portional to n, as pointed out by a number of authors.

It will be assumed for the moment that the n scatter-
ing particles are noninteracting, distinguishable, and la-
beled with an index p, although these assumptions will

be relaxed shortly. It will also be assumed that the N
potential wells are identical, relatively deep and narrow,
and centered on a periodic lattice of points x;, i =I,N.
In that case, the lowest-energy eigenstate of a single par-
ticle p bound in a particular well i can be written to a
first approximation as

y(r„) =- yn (r„—x; ) . (I)
Here yn (r) is defined as the lowest-energy solution to
the Schrodinger equation for a single well at the origin
(x=0) assuming that none of the other wells exist. An
explicit solution for yn could be calculated if we were to
assume a specific form for the potential wells, but that
will prove to be unnecessary.

Equation (1) is a reasonable approximation to the
eigenstates of a particle to the extent that the overlap of
the wave functions from two neighboring wells can be
neglected. Even if the overlap of the wave functions
were identically zero, however, the eigenstates of Eq. (1)
would be degenerate, so that we can just as well consider
eigenstates yq that are superpositions of these
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where the coefficients a; are arbitrary in the degenerate
case. It will be found that the scattering properties of
Eq. (2) are very dilferent from those of Eq. (1), and that
any analysis of coherent scattering must take the actual
wave function of the scattering particles into account.

Fortunately, the overlap of the wave functions from
two neighboring wells splits the degeneracy and deter-
mines the form of the actual eigenstates. From Bloch's
theorem, the most general solution to the Schrodinger
equation for a periodic potential is

y(r) =e'"' ug(r), (3)

where ui, (r) is a function periodic in the crystal lattice.
Equation (3) constrains the allowed values of a;, so that
Eq. (2) must have the approximate form

yi, (r„)= g e'" "yg (r„—x;) .
N i

(4)

Here the factor of 1/J1V is required for normalization
and we have used the fact that r„=x; in the slowly vary-
ing exponential term, since the wells have been assumed
to be very narrow. Although Eq. (4) is approximate, the
results which follow could be derived directly from the
form of Eq. (3). Equation (4) will be used instead to
maintain an obvious connection with the usual view of
particles bound in a specific well.

At this point we have considered only the eigenstates
for a single particle in a periodic lattice. For nonin-
teracting, distinguishable particles, the wave function y„
describing all n scattering particles can be defined by as-
signing a value of k to each:

y. (r~, r2, . . . , r. ) = yk, (r~) tA, (r~) yk„(r. ) . (5)

A thermal distribution at some relatively low tempera-
ture T will be assumed, in which case the excitation of
higher-energy states in the wells can be ignored. It will
be found that all states of this form have the same
scattering properties, so that we need not be concerned
with any averaging over the thermal distribution. (More
formally, this corresponds to the use of a diagonal densi-
ty matrix, as will be discussed below. ) We see that the
actual form of the wave function and thus the scattering
properties are determined by quantum mechanics and
thermodynamics, and that it cannot simply be assumed

that each particle is bound in a specific well.

Having determined the appropriate wave function, we
would now like to calculate the corresponding scattering
rate. One approach would be to assume some specific
form for the scattering interaction and lattice properties,
for which the scattering rate could be computed; such a
result would not be general in nature and would require
the evaluation of a number of integrals. That will be
avoided here by first computing the total elastic-scat-
tering rate R~ for the case of X fixed scattering centers
in a periodic lattice, for which the result is known.
The total coherent scattering rate from the wave func-
tion of Eq. (5) will then be shown to diff'er from RN by a
factor of (n/N) .

We therefore consider a wave function yF in which
each of N particles is bound to a fixed site in the lattice,
which can just as well be chosen to be

H'=g U(r„—r„), (7)

where U(r) is some short-range potential and r, is the
position of the incident particle. Conventional perturba-
tion theory then gives

RN 2, 1&p yFIH IpyF&I '&«r Ep), —

where E~ is the energy of the corresponding scattered
particle state. yF is the same in the initial and final
states since the scattering is elastic and the short-range
nature of U as well as the negligibly small overlap of the
wave functions ensures that the matrix elements are zero
for any of the scattering particles to be found in a
dilferent potential well. Inserting Eq. (6) for yF and
plane-wave states for the incident particle gives

I/fF(ri, f2, . . . , rN) = Pg (ri —xi)

x Qw(r2 x2) ' ' ' Qw(rN xN) (6)

An incident particle, such as a neutron, will be assumed
to have momentum hp and the total elastic-scattering
rate into momentum hp' will be computed. The spin of
the incident particle will be neglected for simplicity.

The exact form of the interaction between the incident
and the scattering particles is of no importance and will

simply be taken to be

N 2

RN= g g „d'r„„d'r„e' ' ' '"y~(r„x„)U(r, r„)yg—(r„—x„) —8(E~ Ep). — (9)

By making a suitable change of variables (r =r„—x„,
r„'.=r„—x„), all the integrals can be cast in the same
form, aside from the exponential factor, so that Eq. (9)
can be reduced to d3r,' d3re "@fan(r)U(r, r)pw(r) . —

RN = g g e 'Mpp b'(Ep —Ep),PP (IO)
The sum over p in Eq. (9) has been relabeled with the
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index i in Eq. (10) for reasons that will become apparent shortly.
The coherent scattering rate R corresponding to the wave function of Eq. (5) can now be computed in a similar

manner by inserting y„ instead of yF into Eq. (8):
2

n

R= g g g „d r, d r„e' '"—e
' " "e ""'y~(r„—x;)U(r, ,

—r„)yg (r„—x;) b(E~ —F~). (12)
k'p' p li 1

The sum over p can be performed immediately and is

simply equal to n, so that

1V
2

R= — g g e "
'Mpp b(Ep Ep) (14)—

p' i I

2

or

R=(n/N) R~

as asserted earlier. The total elastic-scattering rate from
an array of N fixed scattering centers is proportional to
N for small wavelengths, as one might expect, so that
Rjv=PN, where P is a constant. Thus, we have finally
that

R=Pn /N (i6)

for the total coherent scattering rate.
A brief comment regarding the experimental observa-

bility of coherent versus incoherent scattering may be
relevant. The conventional theory' ' gives a large dif-
fuse scattering rate for n «% which has a pseudorandom
phase compared to the incident wave due to the random
(but fixed) locations of the n atoms. This diffuse scatter-
ing is coherent (in the semiclassical theory) in that it can
produce an interference pattern if the incident and scat-
tered waves are superimposed, as would be the case using
a thin crystal and a photographic plate close behind it,
for example. The pseudorandomness of the phase would

A sum over k„' has been included to indicate that, in gen-
eral, the values of k„need not be the same in the initial
and final states. Nearly all of the terms with k„'Ak„cor-
respond to an exchange of energy between the incident
and scattering particles and must therefore be omitted in

a calculation of the elastic-scattering rate. More gen-
erally, all terms with k„'Wk„must be omitted when com-

puting the coherent scattering rate, since they corre-
spond to orthogonal quantum states and cannot interfere
with the incident wave.

Retaining only the k„' =k„ terms, Eq. (12) differs from
Eq. (9) only by the addition of the sum over p and the
factor of 1/N. In particular, it should be noted that the
factors of exp(+ ik„x;) cancel out, so that no thermal
averaging over the k's is necessary, as mentioned earlier.
Making a similar change of variables, Eq. (12) can be
written as

n W
2

p' N p li I

cause the interference pattern to vary with position along
the photographic plate similar to a speckle interference
pattern from a laser. In the quantum-theory treatment,
however, this diffuse scattering is intrinsically incoherent
and no such speckle interference pattern would occur.

It can be shown that the results obtained above hold

approximately in the limit of n«N even for indistin-
guishable particles or particles with a short-range in-

teraction. This seems reasonably apparent and the de-
tails will not be given here.

Physically, the incident particles are scattering off the
spatial variations in the density y y induced by the
periodic potential, which is the same for all the scatter-
ing particles and gives a coherent factor of n . Although
it will not be shown here, similar effects can be expected
from the spatial modulation of y y for propagating
states as well as bound states.

One of the interesting features of these results is the
fact that, for a single-scattering particle (n =1), the total
coherent scattering rate is a factor of 1/N less than it
would be if the scattering particle were assumed to be
found in a specific but unknown potential well. More
generally, it can be shown that a semiclassical treat-
ment in which n particles are bound in specific but ran-

domly chosen locations gives a coherent scattering rate
proportional to n, as opposed to the n2/N rate obtained
quantum mechanically. These results illustrate the non-

classical nature of the quantum-mechanical uncertainty
in the position of a particle and may not be too surpris-

ing in view of the recently derived form of Bell's inequal-

ity in the position domain.
Equation (3) (Bloch's theorem) is valid regardless of

the magnitude of the overlap of the wave functions, but
these results are also dependent on the thermodynamic
postulate that the energy eigenstates, which are not lo-
calized but are distributed throughout the crystal, are
populated with random phases, which corresponds to a
diagonal density matrix. Very diA'erent results ~ould be
obtained if an incoherent population of some localized
set of states, such as the fixed-site yF's of Eq. (6), were
assumed instead. The essence of quantum statistical
mechanics is that it considers a set of unperturbed ener-

gy eigenstates, which are nonlocalized in this example,
and then assumes that the introduction of some small,
random perturbations will ensure a diagonal density ma-
trix in that set of basis states. Classical physics (and
perhaps our intuition) suggests, instead, that the parti-
cles are really bound in specific but unknown locations,
which corresponds to a density-matrix diagonal in a set
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of localized basis states. The question then arises as to
whether or not the true eff'ect of local perturbations may
be to give a density-matrix diagonal in a set of localized
states, a possibility that could be investigated experimen-
tally by means of these eA'ects.

In principle, these results can be applied directly to
neutron scattering in a crystal containing n atoms of an
isotope that scatters strongly due to resonance eA'ects

and N na—toms of a different isotope with negligible
scattering. As a practical matter, scattering of this kind

may be limited by impurities, dislocations, thermal pho-
nons, mechanical deformations, and other crystal de-
fects, all of which are beyond the intended scope of this
paper. In particular, as the density of defects increases
one might expect that the nonlocalized eigenstates would
eventually be replaced by localized states due to Ander-
son localization. Below the threshold for such localiza-
tion, however, the energy eigenstates remain nonlocal-
ized and the results obtained above should hold.

In summary, n coherent scattering is predicted by the
quantum theory for n particles bound in a periodic po-
tential, whereas the semiclassical approach predicts a to-
tal coherent rate proportional to n. An experimental in-
vestigation of these inherently quantum-mechanical
effects would test certain nonlocal assumptions inherent
in quantum statistical mechanics. The observability of
such effects in actual crystals may be limited by imper-
fections of various kinds, which are beyond the intended
scope of this paper.
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