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Linear Temperature Dependence of Resistivity as Evidence of Gauge Interaction
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We show that the gauge character of interactions, which naturally appears in strongly correlated elec-
tron systems in the absence of long-range magnetic order, results in a linear T dependence of the resis-
tivity.
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Apart from the high value of T, the most striking
diff'erence between the copper oxides and the usual met-
als is revealed by their normal-state properties. One of
the most famous and reliable of their normal-state
anomalies is the linear T resistivity observed in a wide
temperature range ()600 K). '

As was pointed out by Anderson and supported later
by numerous evidences these materials are close to a
Mott-Hubbard metal-insulator transition, with a small
number of holes introduced by doping being responsible
for charge transport. Anomalous properties of the nor-
mal state indicate that these holes cannot be described
by a Fermi-liquid theory. In fact, they should not be de-
scribed by a Fermi-liquid theory unless there is a long-
range magnetic order. The reason is that the strong on-
site repulsion results in long-range forces between holes,
rendering the Fermi-liquid description impossible. These
forces are gauge fields. The gauge fields always ap-
pear when some states are completely excluded from the
Hilbert space, such as states with double occupation,
which are excluded in strongly correlated electron sys-
tems. The long-range gauge forces become important in
the absence of magnetic order. In this Letter we assume
its absence and show that gauge forces result in the
linear T dependence of resistivity. The correlated elec-
tron system can be formally described by the theory of
Fermi and Bose fields coupled with the gauge potential.
In this formalism the Bose field is responsible for the
linear T dependence of resistivity. Thus, this theory is
reminiscent of the original Anderson explanation of
linear resistivity which turned out to be essentially true.

The motion of holes impeded by the constraint of no
double occupation results in a long-range interaction
which is assumed to be the most important interaction in
the problem. Thus, we can simplify the problem by leav-
ing only this interaction and neglecting any local interac-
tions (such as antiferromagnet local exchange, etc.):

tH =~ ti~CIizC) Iz,

where c;, is an electron at site i with spin a satisfying the
constraint

ni =Zciacia —I (2)

and the total number of electrons is close to one per site,
(I/N)P;n; =1 —x, with x (1 the doping. This is just
the Nagaoka problem.

This problem is, in fact, a gauge-field theory. The
constraint can be solved by representing the electrons as
a product:

&ia =pi Zia ~ (3)

&I &i i

Z; Z;e
In new variables the Hamiltonian becomes

(4)

The well-known Nagaoka theorem states that one
hole in the system chooses the ferromagnetic ground
state Z; =const, Z;*Z, =1, so that the hole becomes a
free particle. At a macroscopic concentration of holes
the ferromagnetic correlations should persist at small
scales less than x 'I (no antiferromagnetic exchange).
Thus, at small doping x((1 one can use the continuum
limit of the Hamiltonian (5):

H = — [tlt'(V i a) 'tlt+ y—
1
y1'(VS) '],

where tlt; is the spinless Fermi field of holes, whereas the
complex spinor field Z is a CP ' representation of the
spin operator,

t + 1 12Si =cia&iapcip ZiacsiapZip [ Z
1

= 1 lit

The ansatz (3) ensures the constraint (2) since
n; =1 —y; tlt;, and introduces new gauge degrees of free-
dom:

ia,
V V;e
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where a =iZ*VZ is the gauge field produced by the fluc-

tuations of the vector field S; its flux is the density of the
Skyrmions —topological excitations:

F (I/8x )e„Q [tt„Sx8+].

The coefficient y )0 describes the strength of the
hole-spin wave repulsion; for usual lattices y-1. Thus,
the interaction between holes and spins is naturally di-
vided into two parts: contact repulsion and nonlocal in-

teraction with Skyrmions mediated by the gauge field.
The first part stabilizes the ferromagnetic state at short
scales, whereas the second is responsible for the large-
distance behavior.

This theory can be formally rewritten by introducing
the independent auxiliary gauge field (ap, a),

L -ill'(imp ap)y — y—'(iV a)'—y
1

2m

+Z*(imp —ap)Z — y yZ*(iV —a) Z. (5)

The gauge field a„plays the role of Lagrange multipliers
ensuring the constraints resulting from the local con-
straint (2):

out by Reizer.
In the Coulomb gauge ao =0, the fermionic contribu-

tion to the transverse field propagator is

(DF)„,=DF(b„, q„q—,/q'),

DF =1COAF +gFq
(7)

where gF-mF is the diamagnetic susceptibility of the
charged Fermi gas of holes, and XF describes the
strength of Landau damping. In the clean metal at low

temperatures XF-Jx/q. At small q the singular behav-
ior of kF is cut off by the mean free path l =Xi„UF 'T'h. e
transport relaxation rate ii, ' =r; z in the dirty metal.
In the clean metal it was evaluated by Reizer and Lee in

a different context. ' In 2D it is it„' —(T/cF) EF or
(co/eF) ~ieF. Dressing of the electron bubble (7) by the

gauge field does not result in any singular contributions
to DF '. damping is cut off at small q, and the magnetic
susceptibility g does not acquire singular contributions as
well. In the limit q/co 0, rp 0, the damping coef-
ficient becomes XF '(eF r; i,) '+ (T/eF)

The total propagator of the gauge field is the sum of
the Fermi and Bose contributions:

j&+jz =o, p&+pz -o, (6) D =DF +D~ =i~X+gq
(8)

where j~ z is the current of holes or spin excitations and

p is their density. The physical electromagnetic current

jt,h„, (I/2m)c Vc can be regarded as the hole or spin
current according to the relation (6): j~h„,=j~= —jz.

We do not know the ground state of the Lagrangian
(5), but we assume that at some small doping the long-

range magnetic order disappears and the excitations in

the normal state can be described as spinless holes and

spin-carrying bosons Z interacting via gauge field a. It
implies that these bosons do not form a Bose condensate
which would be destroyed by the gauge interaction. We
do not know the renormalized physical parameters (such
as the bosonic and fermionic mass density of states, etc.).
Instead we introduce them phenomenologically. We as-
sume that all properties of the Bose field are governed by
a single energy scale E,« eF.

The gauge field a„becomes dynamical when we take
into account the radiative corrections produced by fer-
mions and bosons. In the normal state the interaction
between the gauge field and charged fields can be treated
perturbatively. The leading contribution to the propaga-
tor of the gauge field is given by the fermionic and bo-
sonic loop. As usual the electric field is screened at small
scales and its effect can be neglected. This is not the
case for transverse photons, which mediate the long-
range interaction between particles. The physical reason
for this effect is that the state magnetic field is not
screened in the charged normal gas, whereas Landau
damping provides effective screening for the magnetic
field. The importance of this effect for the low-

temperature properties of the normal metal was pointed

~F+~B~ g gF+gB ~

The Bose contribution to the photon propagator does not
result in as large a damping as the Fermi one and can be
neglected, X =XF. Its contribution to the diamagnetic
susceptibility gii-mii is at most the same as the Fermi
one, and it does not influence the estimates. However,
the physical resistivity is governed by the bosons as we

show below.
As we explained above, one can ascribe the physical

electromagnetic charge to either holes or bosons. Choos-

ing, say, the former prescription we express the conduc-
tivity o through the correlator of j~ currents. In the
Gaussian approximation over the gauge field we get

(j,j,)=DF ' —DF '(DF '+Dg ') 'DF '

= (DF+Da)

where DF and Dq denote the hole and boson dressed
bubbles. This equation is symmetric in bosons and fer-
mions and is characteristic for all systems where interac-
tion is carried by the gauge field. Thus, the conductivity
1S

o = (Xg +XF '), -'p.

This equation neglects the contribution from the dia-
grams in which two hole bubbles are connected with

more than one photon line. Physically, it means that we

neglect the effect of the photon drag.
The fermion part kF is known. Below we estimate
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Xe =(e ncaa/me)r, „, (10)

where me is the renormalized mass of bosons and ne is
an effective number of bosons involved in scattering.

The transport relaxation time is given by the standard
expression:

As we see below the main contribution to the dissipa-
tion of bosons comes from the scattering by the low-

energy photons coX= vFq [see (7)], so that co/vFq«1.
In this frequency range the radiative corrections to the
vertex are nonsingular and small, since they contain the
powers of the dimensionless parameter mF/m~ && I,
which is proportional to the doping concentration. We
will neglect these corrections. This justifies the use of
the kinetic equation approach. However, the corrections
can renormalize one-particle properties (such as mass,
relaxation time, etc.) substantially.

The renormalization of the vertex becomes very im-
portant in the opposite limit, co/vFq »1, which changes
the interaction with an external electromagnetic field.

In the framework of the kinetic equation the problem
is reduced to the evaluation of transport relaxation time:

where

f(p,p') =(1 —cos8F F ) [1 —(pq)'/p'q']p'/q'.

We do not need to know the specific properties of Gg
in order to evaluate Eq. (13). The reason is that Gz de-
pends weakly on the angle 0~~ since cop&&T-e-mg '

x(p') and, as we show below, cop«r, , ' as well. In-
tegrating over the angle 0 we get

I i

r, , '=Tg ~„p p, ImGe(E, p')8'(p')yl(p'/p),
2n '

y, (a) —=a'q ' d8 (I —cos8)sin 8 1 min(p, p' )
2n (I —2acos8+a ) 2 p +p'

The function ImGq(E, p') is sharply (order of rt, ')
peaked around E=p' /me, therefore pl(p'/p), being a
smooth function of p', can be replaced by pl (1), yielding

ri„' = —,
' TJ'(E)g ' ve(E),

where ve(E) is the boson density of states. Assuming
that d'(E) and vg(E) do not depend on E in the range
F., (e& pF, we finally get

r, , (E,p)=„, ImGe(E —cop )I

2r
xd „(p)ImD„,(coq)d'„(p)

coth +coth (1 —cos8~ F ) .

cop/T= gq '/)T- (mz/m—F)(Tm.e) ' «1. (12)

In this temperature range the factor coth(co/2T)
+coth[(E —co)/2T] is reduced to 2T/co Then the in-.
tegral over co is performed using the analyticity of Ge (E)
in the upper half plane:

r, , '(E,p) = dp'd8p'd'(p)lmG ( +oiEX 'gq', p')

x Tg 'f (p', p ), (13)

Here 8FF l(p,p') is a scattering angle, q=p —p', and
d'„d'(q, co)p„ is a bosonic vertex. The angular factor
in Eq. (11) describes the renormalization of the elec-
tromagnetic vertex, which appears at co » vF q and
dramatically changes it. It suppresses nonphysical pro-
cesses with infrared photons. Neglect of this factor sim-

ply means the loss of the gauge invariance; without this
factor the integral diverges at finite temperatures. This
remarkable property of the kinetic of gauge theories was
pointed out by Lee.

The main contribution to the relaxation rate (11)
comes from the scattering by photons with energy
cop gq /k. These energies are small, cop« vFq, so that
we can replace d'„ in (11) by its value at q 0, co/qvF

0: a"„=d (E,p)p„. At low temperatures these ener-
gies become lower than the temperature:

4X

vg mg

This result is not sensitive to the photon damping A. and,
thus, to additional nonmagnetic mechanisms of dissipa-
tion. The damping X appears only in the condition (12),
which makes this analysis valid. According to our as-
sumption, parameters of the Bose system me, ne, d', v are
determined by a single energy scale E„which yields the
estimate

R-(h/e )T/EF (14)

The temperature dependence of the resistivity is not
sensitive to nonmagnetic scattering mechanisms (such as
impurities, phonons, etc.). This is not true for a
frequency-dependent conductivity cr(E) at E»T, which
depends crucially on the photon damping A. .

We start with the dirty limit in which XF saturates at
p
=

T; REF for small q & x '
(rjmpEF) '. Since the

main contribution to resistivity comes from bosons
with p /mz —T, at sufficiently low temperatures T(x(T'; &EF) mg, and then A, can be replaced by X,

At e»T the photon frequencies are large, m-e, so
that the factor coth(co/2T)+coth[(E —co)/2T] in (11) is
reduced to sgnco+sgn(E —co); one can neglect the gq
term in the photon Green's function since ken-kq m~ '

Xe-EF/T.

This damping is smaller than the damping of the
gauge field generated by fermions, Xz «kF, which
justifies our assumption X=Aq+kF=kF. On the con-
trary, according to (9) the resistivity is governed by the
Bose contribution,
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»gq . The result is

y2(a) =

r, , = r/' ImGg (e ro,—p') (Xro) ' [sgnro+ sgn (e —co) ]y2(p'/p) p ',~ dp'dao

(2rr) '
~ d0 (1 —cosi9)sin 8

2rr 1
—2a cos8+ a '

Proceeding as above we replace p(p'/p)p by its value

of p'2=2m/ma =p' and perform the integral over p'.
The remaining integral over co gives, with logarithmic
accuracy,

r, , ' =[(I/4z)dt klmzvq(e)mitln(X/2m')]e.

Assuming again that all parameters of the Bose sys-
tern are governed by a single energy scale, we estimate
the correction to residual resistivity:

dilferent framework. ' Our work was substantially facili-
tated by discussions with P. A. Lee who explained their
results prior to publication.
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8R —(r;mpeF) 'e/E, . (IS)

In the clean case the main contribution to the scatter-
ing rate r, , '(e) comes from photons with Xco-gq . The
estimate yields

r,„'—(e/eF ) 'i'E„,

which falls rapidly at e « eF. Thus, in this case the
frequency-dependent resistivity is governed by the fer-
mions:

R-(e/eF) 4".

The above analysis was based mainly on the weak as-

sumption of the absence of a long-range magnetic order.
The main physical results are a consequence of the gauge
character of the interactions in strongly correlated elec-
tron systems and are presumably model independent.

When this work was in progress we became aware of
the analogous results obtained by Nagaosa and Lee in a
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