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Unbinding of Charge-Anticharge Pairs in Two-Dimensional Arrays of Small Tunnel Junctions
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We describe the behavior of charges in two-dimensional arrays of normal-metal tunnel junctions with

very small capacitance. A Kosterlitz-Thouless-Berezinskii phase transition with unbinding of charge-
anticharge pairs occurs at a transition temperature of about T, -e lgnCks, with C the junction capaci-
tance. We calculate the influence of tunneling conductance; T, is reduced with increasing conductance
and no transition occurs for junction conductance above (14 kA) . In the superconducting state a
similar transition occurs at a 4 times higher T, . We present the first experimental results on the conduc-
tive transition of an array in the normal and superconducting states.

PACS numbers: 74.50.+r, 73.40.Rw, 73.50.Yg

With modern lithographic techniques it is possible to
fabricate metal-insulator-metal tunnel junctions with an
area below (100 ntn), and consequently a capacitance
of less than 10 ' F. When one electron crosses the tun-
neling barrier, the charging energy Ec -e /2C is about 1

K and cannot be neglected at low temperatures. This
has given access to a new area of mesoscopic physics. A
series of effects have been predicted theoretically, and
some have recently been observed. A review is given by
Averin and Likharev. ' Most experimental effort has
been directed at single junctions, circuits with two or
three junctions, and longer linear arrays. Only one ex-
perimental paper has appeared on fabricated 2D arrays
of small junctions. In that paper a transition is reported,
similar to that seen in granular films, between insulating
and superconducting behavior at T =0 for samples with
a normal-state sheet resistance above or below the quan-
tum resistance. A large number of theoretical papers
have been devoted to this subject. In the present Letter,
we discuss a different aspect of 2D arrays: For certain
reasonable values of the parameters the interaction be-
tween single charges on islands depends logarithmically
on their separation. A real Coulomb gas with 2D in-
teraction can be realized, and a Kosterlitz-Thouless-
Berezinskii (KTB) phase transition should occur at a
critical temperature T, . Below T„only bound charge-
anticharge pairs are present; above T, free charges +e
and —e are generated. We calculate the influence of
dissipation on this charge-unbinding transition. It leads
to a suppression of T, when the tunnel-junction resis-
tance is lower than the quantum resistance. As we will
discuss later, present-day techniques only allow fabrica-
tion of samples in which the logarithmic interaction ex-
tends over a limited number of cell distances (10-100),
with a consequent rounding of the transition. In the su-
perconducting state, a similar transition is expected at a
4 times higher temperature, where bound (+2e)-( —2e)
pairs unbind. The possibility of a charge KTB transi-
tions in a superconducting 2D granular materials has
been indicated by Sugahara and Yoshikawa and by Wi-
dom and Badjou.

Single-electron charge solitons in 1D chains have been
discussed in detail by Averin and Likharev' and others.
A simple exact solution is available for the dependence
of the island potential on position. When the nearest-
neighbor capacitance is C and the self-capacitance of an
island is Co, the screening length is A = (C/Co) 'i .
When A is small, the solitons are independent for low
density. Solitons repel (attract) each other when they
have equal (opposite) charge. We adopt a similar pic-
ture for the 2D array, concentrating on the behavior
within the screening length. It should be noted that the
1D array does not show a phase transition at a finite
temperature.

Consider a square 2D array of small tunnel junctions
(see Fig. 1) with capacitance C, connecting "islands"
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FIG. 1. Top: Approximation scheme of a square 2D net-
work. Tunnel junctions are represented as crossed capaci-
tances. "Islands" are positioned at integer values (x,y). Bot-
tom: Schematic distribution of charges in the neighborhood of
a charge-anticharge pair. Only two islands in the picture con-
tain a net charge.
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(x,y) with their nearest neighbors at distance 1 (lengths
are dimensionless). Each island in addition has a capaci-
tance Co to ground. The non-nearest-neighbor elements
of the capacitance matrix are neglected. The electrical
potential of island x,y is indicated as @, , The charge
distribution for the case of a positively charged island
near a negatively charged island is schematically indicat-
ed in Fig. 1. The charge on island x,y is equal to

q„) =Cp@„~+C(44, )
—4,—) &

When qoo e and all other q„,. are zero, the potential
for r =(x +y ) 'j'»1 can be approximately solved in a
quasicontinuous approximation from V 4(r) —(Cp/C)
x 4(r) =0, with the solution

e(r) =aK, (r/A), A=(C/C, )'".
The modified Bessel function Kp(r/A) falls off exponen-
tially for r/A»1. For r/A«1 it is approximately equal
to —ln(r/A). In this regime we have 4(r) = —aln(r/
A), which is the same potential as for the 2D Coulomb
gas. From Gauss's law in the 2D medium with eA'ective

dielectric constant C we find a-e/2 Ctr. The free energy
of a pair of charges +e and —e at a mutual distance r,
for 1«r«A, is equal to

Up =2)u„„+(Er /n) lnr .

The constant 2p„„,is the free energy of a pair with sepa-
ration 1 and includes an entropy term. Without the

A[v] = g dr
1

'~ dv'ij

4Er ((j)+ p r

latter it has a value of about 0.42Er. The form of (2) is

the same as for vortex-antivortex pairs in the 2D I-Y
model or in arrays of superconducting Josephson junc-
tions. " The ratio between p„„,and the prefactor of the
logarithmic term in (2) is also very similar to the ratio in

those systems. A KTB phase transition occurs at a tem-
perature

ktt T„=Er /4ze, , (3)

Z = QDv; exp' —W lv ]]

can be expressed as a path integral over the fields p;,
which are related to the electric potential by dp;/dt
=e4, . The action is

where e, is a nonuniversal constant slightly larger than l.
Above T„ free charges of either sign, + e, will be
present. Near T„ their density should be given by the
well-known square-root cusp formula, n, =Kexp[ —2b
x (T/T, —1) 'j ], where K and b are constants of order
1.

Above we concentrated on the interactions between

the charges. We did not account explicitly for the tun-

neling of electrons between the islands, except that we

assumed that it establishes the equilibrium charge distri-
bution. However, if the tunneling conductance, charac-
terized by the parameter aT=(h/4e )/RT, where RT is

the junction resistance, is not small, this picture is no

longer su%cient. We can investigate the influence of ar-
bitrarily strong tunneling by means of the microscopic
theory. The partition function

The first term represents the charging energy (here for
simplicity we drop the self-capacitance and put h =1,
p= I/kttT), and the second is due to the tunneling. The
islands are labeled by the subscripts i, and w„=w;
refers to nearest neighbors. The dissipative kernel is

a(r) =aT(psin(trr/p)] . The fields w; are conjugate to
the charges and the limits of the integration in the parti-
tion function depend on the allowed charge states of the
system. Since here the total charges on the islands are
quantized, the integrals include a summation over the
winding numbers p;(P) =y, (0)+2trn; To proce.ed we

decompose the phase as y; (r) =p;(0)+0;(r)+2nn, r/p,
where 0;(0) =6, (P) =0. In lowest order we consider the
charging energy only. The winding-number contribution
then leads to the so-called discrete Gaussian model
(DGM). This model exhibits the KTB transition at the
critical temperature given by (3). This result was also
obtained (by a different method) in Ref. 6 where the
case of a 2D Josephson array was considered. The
present method allo~s us to extend the analysis to evalu-
ate the influence of the dissipation by tunneling on the
transition temperature. Details of the calculations will

be presented elsewhere. ' For small aT the dissipation
can be treated perturbatively. The first-order correction
to the transition temperature is

T;(aT) =(Er/4tre, )(1 —O. 1aT) . (5)

On the other hand, for strong dissipation T„ is almost re-
duced to zero. In this limit it is possible to map the
problem onto the absolute solid-on-solid (ASOS) mod-

el, " in which the coupling constant (in the limit T 0)
is proportional to aT. The critical value of dissipation
determined from Monte Carlo calculations' is

a T,crII = 0 45 ~ (6)

Above this critical value the Coulomb gas is always in

the disordered phase. All roughening models (such as
the DGM and ASOS models) belong to the same class of
universality so that the transition is of the KTB type
everywhere in the phase diagram (Fig. 2). The value
0.4S corresponds to a critical junction resistance of 14
kn.
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used for measuring G) and the array is shorter than A,
the capacitive coupling to ground leads to an induced
charge COVg on each island. The effect of this induced

charge is a "frustration, " similar to the frustration in-

duced in classical 3osephson-junction arrays by a perpen-
dicular magnetic field. There, f is equal to the flux per
cell divided by the superconducting flux quantum h/2e.
In the 2D charge system the frustration is

f=CpVg/e.

FIG. 2. Phase diagram of the normal-metal tunnel junction
array. T, is the transition temperature, ar (6.45 kQ)/Rr.
Values of T, have been calculated on both axes and close to the
temperature axis.

G = Rp ne
W

W
I. R~ K exp (7)

Below T„, G =0. Above T„, the conductivity should start
to rise according to Eq. (7). In practice, the screening
length A or the array size will limit the scale over which
charge-anticharge pairs exist. To have an ideal KTB
transition, one needs conditions in which the logarithm
of the pair separation can be much larger than 1. For
finite array size or finite screening length, the transition
will be rounded off.

Because of the complementarity of phase and charge
as well as the similarity of the Hamiltonians involved, a
high degree of correspondence exists between charges in

arrays of low-capacitance superconducting or normal-
metal tunnel junctions and vortices in arrays of super-
conducting junctions where charging effects can be ig-
nored. In classical two-dimensional Josephson-junctions
arrays, a KTB transition occurs where vortex-antivortex
pairs dissociate. The resistance is zero below T, and
grows with a square-root cusp equation similar to Eq.
(7) above T, Voltage, conducta. nce, and charge are re-
placed by current, resistance, and vortex.

When the potential of both end electrodes is increased
to Vg with respect to ground (Vg is much larger than V

The mobility of the charges is determined by the tun-

neling rate in the junctions. Applying the global rules,
where the energies of the whole system before and after
tunneling count, in a large system at low density the
charge energy is independent of position and the charges
should be mobile. Without driving voltage, they will

diffuse around. With a voltage V over the length L of
the array, the net tunneling rate is r, =(eRr) 'V/L, as
long as L «A. This leads to a current I =n, Wer„where
W is the array width. Consequently, the conductance of
the whole array is

The properties of the array should be periodic in f with
period 1. In practical fabricated arrays random fraction-
al charges will sometimes be induced on islands by
trapped charges in the barriers or on the film surfaces.
Their presence leads to a random initial additional value
off for each island.

In the superconducting state, if there are no quasipar-
ticles, the unit of charge is 2e and the charging energies
are larger by a factor of 4. This is also true for the KTB
temperature, which should now be keT„E~/ne„Be-.
cause of the presence of Josephson tunneling, and be-
cause the charges have equal energy on all islands, the
charges will not be localized. However, the calculation
of the conductance in the highly correlated supercon-
ducting state is more complicated. Also, the influence of
dissipation on T„ is different from the normal-state case.
Widom and Badjou previously indicated the possibility
of a charge KTB transition in granular superconducting
films, and gave the same (unrenormalized) transition
temperature. From the correspondence with classical 2D
Josephson-junction arrays, Sugahara and Yoshikawa
also qualitatively predicted the charge transition in su-
perconducting films. It is clear that for large Josephson
coupling energy EJ, the superconducting phase coher-
ence dominates at low temperatures and the resistance is

zero. When E~&&EJ, on the other hand, the conduc-
tance is zero at low T. This implies that a zero-
temperature transition should occur between a supercon-
ducting and an insulating phase when Ec is of order EJ.
This is exactly the type of transition that we reported on
in Ref. 2, which had to be studied by fabricating a series
of samples with varying resistance and EJ. In those sam-
ples that become insulating at T =0, we expect the
charge-pair-unbinding transition to occur when the tem-
perature is increased to T„.

We have experimentally investigated this transition in
an aluminum array with (100 nm) junctions, an island
size of about (0.5 pm), and a cell size of (2 pm) . The
junction resistance R~ is 15.3 kQ. The array length is
190 cells, and the width 60 cells. We estimate the self-
capacitance to ground to be about 3x10 ' F. The
junction capacitance is near 10 ' F, so A is about 18
cells. The array is considerably larger than A, which
should lead to significant rounding of the transition. Ac-
cording to Eq. (3) the normal-state T,p should be near
60 mK (for e, about 1.2). For this array, with a junction
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perconducting state compared with the normal state.
This directly demonstrates that charging effects are
dominating. We expect that it is possible to fabricate ar-
rays with smaller islands and an order of magnitude
smaller junction capacitance. The increased screening
length will allow a closer test of the theory.
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FIG. 3. Measured conductance of an array of (100 nm)'-

aluminum tunnel junctions, 190 cells long and 60 cells wide. N
is in the normal state (magnetic field of 3T applied); S in the

superconducting state.

resistance such that aT is just above the critical value

(6), we expect the normal-state transition temperature to
be considerably reduced below T,o. For the same sam-

ple, the conductance in the normal state and in the su-

perconducting state is given in Fig. 3. The normal state
is achieved by application of a 3-T magnetic field. As
shown, the conductance is zero at low temperatures and
increases sharply above about 20 m K in the normal state
and 160 mK in the superconducting state, clearly show-

ing the conductive transition.
We consider the value of the transition temperature in

the normal state to be in good agreement with the
theoretical prediction, including effects of dissipation.
The functional dependence of G on T does not follow the
square-root cusp dependence, due to the limited screen-
ing length. The transition in the superconducting state
at 160 mK is to be compared with the theoretical value

T,.„about 240 mK without taking dissipation into ac-
count. It appears from the experiment that the influence
of dissipation is smaller in the superconducting state (no
theoretical calculation is available as yet).

We want to draw attention to the remakable fact that
the conductance is orders of magnitude smaller in the su-
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