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We propose that the Meyer-Neldel compensation rule can be understood as arising naturally for as-

sisted processes in which the energy for the process is much larger than that of a typical excitation. In

this case, the total energy is provided by multiple excitations. The prefactor is then proportional to the

number of ways of assembling these excitations. This number increases exponentially with the energy
for the process, yielding the Meyer-Neldel rule.

PACS numbers: 63.20.Kr, 05.60.+w, 66.30.—h, 77.20.+y

the Xo and E obey the equation

lnXo a+ bE, (2)

where a and b are constants.
That is, for a relaxation frequency v, for example, if

the activation energy increases, the attempt frequency vo

increases exponentially. This poses two problems. First,
one obtains values for the apparent attempt frequency
which are difficult to interpret physically. This has been
a great problem in the field of variable-rang hopping, in

which vo is found to vary between about 103 and 102s

s '. Second, it has been difficult to understand, from a
microscopic point of view, why this rule should be so
general.

A phenomenological approach to the problem has been
taken by Keyes, ' Lawson, , and Crine. This may be en-

visaged as beginning from the Eyring theory of the ac-
tivated state. In this model, the reaction rate is propor-
tional to e t", where hG is the difl'erence between the
free energy of the state at the peak of an activation bar-
rier and that of the initial state. Since

h, G =h,H —TAS,

it is evident that

aS/k —aH/k T

Thus, the compensation law follows if the activation en-

tropy is proportional to the activation enthalpy. For pro-
cesses involving an activation volume, Keyes' and
Lawson presented arguments as to why this should be
so, arguing for a constant ratio between them. Crine
has argued for a ratio which will be diff'erent for dif-

A great many activated processes, including solid-state
diffusion in crystals' and polymers, dielectric relaxation
and conduction in polymers, 3 thermally stimulated pro-
cesses in polymers, and electronic conduction in amor-
phous semiconductors, obey the compensation law, or
Meyer-Neldel rule. This rule states that if a process X
obeys the equation

—E/k T

ferent materials.
Three objections to this approach can be invoked.

First, it can be looked at as merely restating the Meyer-
Neldel rule in terms of the Eyring equation. Second, it
seems difficult to understand why it should apply to a
process, such as electronic conduction in amorphous
semiconductors, in which we do not anticipate that an
activation volume will play a role. Finally, it is not im-

mediately obvious what a macroscopic entropy will signi-

fy in such a single-electron process.
Nonetheless, such a concept is very appealing. One

possible microscopic interpretation would be that as the
activation energy (or enthalpy) increases, the number of
paths to the activated state increases. In fact, this is

what we should expect when the activation energy for a
process becomes large compared to the energy of the
typical fluctuations of a system. In that case, a substan-
tial fluctuation is necessary to provide the required ener-

gy. While this has not been generally recognized, it
should be clear that, in a phonon-assisted electron hop,
for example, the electron is far more likely to encounter
a large number of small phonons than one very large
phonon. The number of ways of assembling these pho-
nons will obviously increase as the total energy increases.
In order to obtain the Meyer-Neldel rule, it is only
necessary to show that this number increases exponen-
tially.

For this purpose we consider a simple yet very general
model: that of a two-level system with energies ei, eq,

and el —e2 h, and couple this system to an abstract
multimode Bose field. The Hamiltonian can be written

H= eicici+epc2c2+g(Ato&)[lq"X&+ —, ]
q.u

+ g 7,",~c, c„(kq"+ A,
"—q) + IJ|2c1 c2+J2i c2c il . (5)

q, tl, p

In Eq. (5), n =1,2, y is the electron-Bose-field coupling,
c and k are electron and field operators, respectively.
htoq" is the dispersion of the pth mode, and J is the
field-free coupling term.

In the most common practical situation of the transfer
and excitation in solids the Bose field is just the phonon
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field, so that Eq. (5) represents the two-level version of
the Holstein-Emin Hamiltonian. 'P

The usual approach to systems described by this Ham-
iltonian is the Miller-Abrahams approximation. " It is
assumed that the behavior of the system is dominated by
one-phonon processes. However, Emin ' has shown that
this approximation is not always valid for 6 large com-
pared to kT. He performed an exact calculation for
acoustic-phonon-assisted hopping of electrons between
two sites, including multiphonon processes. He showed
that the rate characterizing a hop between sites g and g'
is given by

(J, e
—s/kt) 2e &l2kT-

SI SS
iP

dt [F(t))"cos ht
n-i

(6)

In Eq. (6), J is the transfer integral between sites, 6 is a
positive activation energy for upward hops, and S and F
are sums involving phonon frequencies tD and the cou-
pling y [see Eqs. (2) and (3) of Ref. 12). The parameter
n corresponds to the total number of phonons emitted
and absorbed in the jump. Assuming a cutoff frequency
co, Emin showed that when

h to & 8 » kT
then Eq. (6) yields

(7)

R ~(Je o) 2e alkT(2tt—/hh) g Bn(h)/n!(2n 1)!
n 1

where

Sp= 2 y(Cpm/p2D)

and

8(a) =3y(a/h cpD) '.

(8)

(10)

However, when 8»1, he finds that the series yields a
term exP(h/Ap) l3, where Ap —,

'
y 'l2tt cPD. That is,

R =v(T)e + e (12)

where v(T) is a temperature-dependent prefactor. '

When 6 is large, the number of different paths to the
final state, via multiphonon processes, increases "ex-
ponentially" with A.

Thus, at low activation energies there is no compensa-
tion rule, but one is predicted, with a slightly different
form from the empirical rule, for large activation energy.
This is physically what we should anticipate. All of the
processes cited as showing a Meyer-Neldel rule involve

In Eqs. (9) and (10), tpD is the Debye frequency. When
8(A) is small, Emin finds that only the first term in the
series of Eq. (8) need be considered (that is, the Miller-
Abrahams approximation is valid) so that

R ~e ajkT

n(a) = V

large activation energies (on the order of an electron
volt), whereas no one has reported such a rule for shal-
low dopants in crystalline semiconductors, for example.
It is also very satisfying, in that it does not require physi-
cally unreasonable phonon frequencies to produce very
large frequency prefactors; The fact that this particular
process yields a prefactor which varies as exp(h l ) rath-
er than exp(h) is not of great concern, as it is notorious-
ly diIIicult' to prove which value of a in an exp(h') law
provides the best straight-line fit to experimental data.
The optical-phonon model has also been considered by
Emin, in Ref. 10. The expression for the prefactor con-
tains an exponential scaling factor which behaves as
exp(A/h top) ln(2Eb/5 top), where top is the optical-
phonon frequency and Eb describes the strength of the
local electron-phonon coupling (Eb»htpp). Thus, we
see that the dispersion does not greatly modify the result,
except to change the value of a.

We do not wish to suggest here that all of the process-
es which yield a compensation law must be phonon ac-
tivated, although this is a reasonable mechanism for
many of them. If the phonon field is replaced by a more
general boson field, the result will be essentially the
same. Intuitively, one would not be surprised (although
this needs to be demonstrated) if processes assisted by
electron-electron interaction yielded a not dissimilar re-
sult, since the electron field can be replaced by a photon
field representing the vacuum polarization.

This picture can be generalized, as follows: Imagine
an electron in the valence band of a large-band-gap
semiconductor at t 0. How long will it take until the
particle is excited to the conduction band? In general,
both particle and energy can diffuse freely in the system
with their own characteristic diffusion equations. In or-
der to reach the highly excited state (h»kT), (1) the
particle has to encounter a fluctuation strong enough to
promote it to the excited state, and (2) once encoun-
tered, the interaction with the thermal fluctuation (pho-
nons, electrons, photons, . . . ) has to promote the parti-
cle to the excited state. If the characteristic time for the
encounter is r~ and the process of excitation r, and
r&» r„ it is the former which determines the transition
rate (I/r, ).

Given an excitation energy d„ the transition rate I/r~
will obviously depend upon the total number of ways a
fluctuation larger than 6, can organize itself within the
interaction volume, V. This is the microscopic meaning
of the Meyer-Neldel rule.

If V is the interaction volume (volume in which the
particle can effectively couple to the excitations), then
the total number of excitations with the total energy in

excess of 5 is given by
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at any time, by conservation of energy. If D, is the
diffusivity of the particle and D, )D„where D, is the
thermal diN'usion rate, then the transition rate is given
b 14

I Ir =C1D,la '1 ( &la ') ' 'n (&) . (14)

In Eq. (14) C is a constant of order unity, and a is an in-

teratomic distance. Clearly n(A) depends on the total
number of ways an energy in excess of 6 can be organ-
ized within an effective interaction volume.

For a stationary particle (localized state), as in the
two hopping models discussed above, the rate of transi-
tion is determined by the local coupling to the thermal
bath and the number of configurations which generate
the threshold energy A. Therefore, for both cases, the
transition rate is determined by the thermal factor
exp( 5/kT)—multiplied by a term which measures the
number of configurations (the entropy term).

An interesting exception might be provided by consid-
ering glassy systems when neither particle nor excitation
can diffuse freely. If the diffusion of energy is hindered

by local barriers (spin diffusion in spin glass), then only
the available modes can be counted for the transition in

question and this, of course, has to be taken into account
when evaluating the transition rate.

In processes involving an activation volume, such as
diffusion and dipole relaxation in polymers, the micro-
scopic model will be very different. But the basic idea is
the same: The generation of the activation volunte is

likely to be a multiphonon process. The larger this
volume and the activation enthalpy are, the more pho-

nons will be required, and the more paths there will be to
the final result. This is a microscopic justification for the
proportionality among h, V, hS, and hH.

We therefore propose that, except for glassy systems,
as discussed above, the compensation law is to be expect-
ed as a consequence of assisted activation whenever large
activation energies compared to typical excitations are
involved. This should be a very general result.
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