
VOLUME 65, NUMBER 5 PHYSICAL REVIEW LETTERS 30 JULY 1990

Models of Intermittency in Hydrodynamic Turbulence
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A heuristic model for evolution of the probability distribution (PDF) of transverse velocity gradient s
in incompressible Navier-Stokes turbulence is distilled from an analytical closure for Burgers turbulence.
At all Reynolds numbers R, the evolved PDF is (L' ~s ~

'J'exp( —const& (s ~/(s2)'J') for large ~s ~.
The model suggests that skewnesses and flatnesses are asymptotically independent of %, and that cas-
cade to smaller scales is not a fractal process. For Burgers dynamics, both simulations and the analytical
closure give a PDF ee (g( 'exp( —constx ~g ~/(g )'J ) for large negative velocity gradient g.

PACS numbers: 47.25.Cg, 05.40.+j, 05.45.+b

The Kolmogorov theory of the inertial range (K41) is

fifty years old, ' but fundamental questions about the
small scales of Navier-Stokes turbulence remain un-
resolved. Kolmogorov postulated a self-similar cascade
of energy to smaller scales (higher wave numbers). Im-
plications include an energy spectrum function of the
form E(k) cx: k J and a dissipation wave number
k, =(c/v ) ', where (. is the mean rate of energy dissi-
pation per unit mass and v is kinematic viscosity.

K41 rests on two distinct assumptions: First, that en-

ergy transfer to small scales proceeds by stepwise cas-
cade, local in wave number; second, that information is

lost in the cascade, so that the normalized statistics of
velocity fields band limited to each, say, decade band of
wave numbers in the inertial range (kp«k«k, ) are
identical and determined soley by e.

The first assumption is very solid. It is difficult to cook
up statistics in which it fails, provided that the inertial-
range spectrum exponent is —1 & n & —3. In particu-
lar, the assumption is easily validated in two very
different cases: the initial transfer in an initially Gauss-
ian field with the K41 value n = ——', ; and transfer in the
highly coherent, sawtooth solutions of Burgers' equa-
tion, where n= —2. The second assumption is much
less secure. It has been challenged by Landau and
Lifshitz, s Kolmogorov himself, and others. Their argu-
ments have led to fractal-cascade models in which the
statistics of successive band-limited velocity fields be-
come ever more intermittent until viscosity intervenes.
In the limit of infinite Reynolds number, such models
confine the dissipation to a vanishingly small fraction of
the entire flow volume. They yield spectrum exponents
n & —

3 . References 5-14 are taken from a large and
varied literature.

The models to be described here have a different origin
and lead to a different picture of intermittency. They
are based on analytical approximations ("mapping clo-
sures") ' ' for the probability distribution function
(PDF) of velocity gradient. The competition between
viscous relaxation and the straining process that pro-
duces small scales is followed in x space. Neither the

s =J(sp, t )sp,

8J/Bt = iso' J' —vkjJ'.
(2)

(3)

The first term on the right-hand side of (3) comes from
the quadratically nonlinear straining term in (1). Alone,
this term would induce extreme intermittency in s and a
singularity in finite time. The second term on the right-
hand side represents viscous decay of s =soJ with decay
constant proportional to the square J of the stretching
ratio and thereby to the square of the effective
intensification ratio of velocity gradients of local flow
structures. Here kd is a characteristic dissipation wave

second K41 assumption nor its fractal variants are sup-
ported. The PDF of velocity gradient is linked to the
Gaussian statistics of large scales. Initial statistics are
not forgotten during straining. The model dynamics are
not fractal but some predictions may mimic those of
fractal dynamics. In a different spirit, Castaing recently
has represented interinittency by superposition of Gauss-
jan PDF's.

Mapping closures are based on the distortion of a
Gaussian reference field in x space into a dynainically
evolving non-Gaussian field. The distortion involves lo-
cally determined changes of field amplitude and gra-
dient. The mapping functions are nonstochastic in the
simplest formulations. They are determined self-
consistently so that the evolution of certain one-point
PDF's under the mapping matches the evolution under
the dynamical equations.

The Navier-Stokes (NS) equation yields

Su( J/2)1 u( (((u((( J p (J+ VV u( J

where u is the velocity field, S/2)t= 8/r)t+—u V, u;,
—= |)u;/t)xJ, p is the pressure per density, and v is the ki-
nematic viscosity. Let s denote any transverse com-
ponent of u; J and suppose that s has a Gaussianly distri-
buted initial value sp. The simplest heuristic form of
mapping closure makes s evolve through the action of a
nonstochastic effective stretching function J(sp, t) that
obeys a nonlinear equation of motion:
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number for sp fluctuations, and the ratio (sp)'t /vkj is
an effective initial Reynolds number, if the initial spec-
trum is compact. The only other parameter is the nor-
malized evolution time (sp) 't t D. ecay of velocity ampli-
tudes is ignored, so the model is properly applicable only
over times short compared to overall decay times. Decay
effects are included in the analytical closure (16) for
Burgers turbulence that suggested (2) and (3). Random
forcing that yields steady states is easily added.

At large enough values of I sp I, (3) quickly leads to a
near equilibrium in which J grows to make the two terms
on the right-hand side balance:

I=
I sp I

/vkd'
I
s I

=&'/vk' J=
I
s

I
'"/(vk2) '"

(4)

The PDF of s is
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P( ) =Po(.,)ei.,/a. ,

where

Pp(sp) =(2z(sp)) 't'exp( —
—,
' sp/(sp)) .

(5)

(6)

FIG. 1. PDF's, normalized by standard deviation, for s
evolved under (2) and (3) (dotted line), Bu1/Bx2 from a simu-
lation at Xi= 150 (solid line) (Ref. 14), and a Gaussian pro-
cess (dashed line).

Equations (4)-(6) imply that P(s) at large enough Is I

has the form

P(s) = vkg

Sx&sp2) is i

exp
(sp')

isi» (sp')

vkd

(7)

Equation (7) recalls the near-exponential PDF tails
observed in incompressible NS simulations ' and else-
where. ' Figure 1 shows the PDF (5), evolved at t =0.3
under (2) and (3) from a start at t=0 with s=sp,
(sp) =1, vk) =1.4. This curve is startlingly close to the
superimposed PDF of tiu 1/iix2 measured by Vincent and
Meneguzzi ' in an isotropic turbulence simulation at
Taylor microscale Reynolds number %i= 150. The up-
ward flare of the skirt of the simulation PDF is accurate-
ly reproduced. It is notable that this rnatch is obtained
at model parameter values that give initial Reynolds
number and normalized evolution time both of order
unity.

An initial spectrum shape enters the closure only
through the evolution time for which it is valid to neglect
overall decay of small scales. Thus Fig. 1 could repre-
sent a stage of evolution of an initial Gaussian field with
spectrum of K41 form and kd = k, . The good match to
a high-Rz simulation arises in essentially one charac-
teristic dissipation-range eddy-circulation time, without
benefit of buildup of intermittency in an inertial-range
cascade. For given kd and v, increase of macroscale
Reynolds number 4' slows overall decay of small scales.
The tails at very large Is I/(sp)'t form quickly and
thereby are independent of %. The steady-state solution
of (3), which is (7) for all s, describes an equilibrium at

The kurtosis K, =(s )/(s ) is 35/3 for this lim-
iting solution. Then realizability inequalities require
that the skewness of s also be finite at % =~. This im-
plies an inertial-range exponent n = —

3 . Localness of
energy transfer ties values n & —3, associated with
fractal models, to skewnesses that increase as powers of
Reynolds number. The present closure suggests that
the % dependence of K, resides not in the skirts of the
PDF but in the deviations from (7) near the maximum
of the PDF.

The value 35/3 is as large as most flatnesses measured
at high %i. Some atmospheric studies yield higher
values, but with unknown effects from spottiness of
large scales. A finite limiting value for K, does not seem
ruled out, given Gaussian large scales. gian has inferred
such a limit from a bold, and uncontrolled, cumulant ex-
pansion. '

The PDF of two-point velocity difference must change
smoothly from Gaussian, at very large separations hx, to
that of s as I hx

I
0. Mapping closure also determines

multipoint statistics, such as this dx dependence, as de-
scribed after the Burgers analysis.

The closure (2),(3) was inspired by an analytic closure
for Burgers's equation

Su/St =vu„„, 2)(/X)t = —
g + v),„,

where u (x, t) is the velocity and (—=u, —= Bu/Bx.
The dominant behavior under Burgers's equation is

steepening of negative velocity gradients into viscosity-
limited shocks. During this process an initially
multivariate-Gaussian field u retains a nearly Gaussian-
univariate distribution P(u) while the univariate distri-
bution Q(() of g becomes highly intermittent, even at
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low Reynolds number.
Analytical mapping closure starts with a mul-

tivariate-Gaussian reference field up(z). It is assumed
that the actual field u(x, t) and laboratory position x are
related to up and the reference coordinate z by' '

result is

[4xx]c:(= r(okk J + 4o aJ'
0

u =X(up, t), dz/dx =J(up, gp, t), (9) (i 7)

where X and J are ordinary, nonstochastic functions and
the arguments up and gp are values measured at any
point z. Thus

(=gpJ(up, gp)8X/tlup—:Y(up, gp), (io)

where gp=8up/az.
The analysis is simplified by the approximation that

P(u) is Gaussian and that u and g are statistically in-

dependent. Therefore I assume that the single-point

joint PDF of u and g has the form

P(u, g) =P(u)Q(g),

u =X(up, t) =r(t)up, & =r( )t& pJ(&p)—:Y((p, t) . (12)

Here r(t) measures the decay of velocity amplitudes un-

der viscosity. Energy conservation then yields

dr/dt = —vr&&'&/&u '& . (i3)

It is easily shown' ' that Q(g) exactly obeys the re-
duced Liouville equation

BQ(g) + 8 $(
Bt |1( 2)t Q«) =~Q«), (i4)

+ v(rgo) '[( ]c(+ vJ&(goJ)'&/&uo), (16)

where a(g) =Bin(N/ J)/Bt.
To obtain closure, [g,„]c.t must be evaluated. Given

(12), this can be done exactly by differentiating (12) and
using the known statistics of the reference field. ' ' The

where []ct denotes ensemble mean conditional only on a
given value g and the divergence term on the right-hand
side expresses the difference of measure between La-
grangian and Eulerian coordinates. On the other hand,
(9)-(12) give

(is)

where Qp(gp) is the Gaussian PDF of the gradient of the
reference field, the factor 1/J expresses the change of
measure associated with squeezing or stretching of z to
give x, and N(t) normalizes Q(g) to unity. ' The re-
quirement that (15) give the same Q(() as (14) leads to
an evolution equation for J:'

with C2 =&(Bgo/8z)'&, kj =Cz/&(o&.
The first term on the right-hand side of (16) and the

first term on the right-hand side of (17) are like the
terms on the right-hand side of (3). The J term in (16)
comes from the —

g term in (8). The derivative terms
on the right-hand side of (17) come from exact treat-
ment of g„„under the space-varying distortion J. The
integral term in (16) arises from the effect on P(u, g) of
the N/ J factor in (15); it makes (16) an integro-
diA'erential equation that must be solved iteratively. The
derivative and integral terms [ignored in (3)] play an

essential role in shaping Q(g) near its maximum. J at
large negative g is controlled by the terms like those in

(3), with the result that a nearly exponential tail is also a

property of Q(g), but only for negative g. The measure
factor 1/J in (15) makes the prefactor take the form

', instead of the ) s )

' in (7). No factor 1/J is

included in (5) because the NS dynamics are incompres-
sible.

P(u, () is unchanged if the transformation r(t),
J((p, t) is replaced by three successive measure-
preserving operations on initial field realizations: (a) an
eA'ective viscous relaxation of the reference field that
changes &(o)/&uo) by the factor [N(t)] and &up) by a
related factor [rp(t)l; (b) a squeezing of the relaxed
reference field by the factor JIv(gp, t) =J(gp, t)N(t); (c)
a reduction of amplitudes by the factor r(t)/rp(t).

Figure 2 compares the Q(g) obtained from the solu-

tion of (11)-(13)and (15)-(17) with direct simulations
of (8). ' The latter were started from a multivariate-
Gaussian distribution of u(x, t =0) =up with an energy
spectrum ~ k exp( —k /kp ). Each simulation involved
105 points unit spaced on a cyclic line segment. Ten
runs were made with parameter assignments v =2,
&up) =1, kp =0.1, which give &gp) =0.015, Cz =3.75
x 10 and Reynolds number R =&up) 't kp '/v=5.
The same values were used in integrations of the closure
equations. The departure from Gaussian shape is still in-

creasing at t =20. The flare of the skirt is reminiscent of
Fig. 1. Nothing is adjustable in the closure.

Burgers and NS dynamics are markedly diA'erent un-

der mapping closure as %' ~. The sharpening of
shocks as v 0 implies that Et=&( )/&g ) increases
indefinitely with %. This is reflected in the analytical
form of the closure PDF: The prefactor

~ ( ~

' makes

Q(g) non-normalizable if the
~ ( ~

~ form is extended
to (=0. Both closure solution and simulations give in-

creasingly sharp peaks at the maximum of Q(g) as the
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high-vorticity regions in isotropic simulations' ' ' are
ropes of vorticity without obvious fractal structure.
Fractal structure may yet show at Rz values that now
are out of reach.
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FIG. 2. Normalized PDF of u =g for Burgers turbulence
according to simulations (data points) and mapping closure
(solid line) at time t =20.

Reynolds number increases.
Mapping closures evolve each realization in the initial

Gaussian ensemble so that multipoint statistics, and

spectra, may be computed over the evolved ensemble. In
the Burgers case at large R, sharpening of negative gra-
dients into viscosity-limited shocks is exhibited by the
model realizations, and the inertial-range spectrum ex-
ponent is n = —2.

Analytical mapping closures for NS dynamics must
deal explicitly with the pressure term in (1). A prime
challenge is the sharp diA'erence in statistics between two
and three dimensions. Velocity vector potentials and
eff'ective pressure fields that are time-dependent func-
tions of local reference-field velocity and velocity gra-
dient are tools for making mappings that properly ex-
press the solenoidal straining of individual realizations.
Will the predictions from (2) and (3) survive a proper
treatment of pressure in three dimensions and a conse-
quently less deterministic evolution of strain? A relevant
finding is that the PDF tail is unchanged in form if a
rapidly varying factor c(t) is inserted in the first term on
the right-hand side of (3).

The present results from a crude closure do not force
me to conclude that fractal processes and corrections to
K41 are absent in homogeneous turbulence. But many
high-%q data can be explained without fractals. The
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