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Experimental Observation of a Strange Nonchaotic Attractor
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Evidence is presented for the existence of a strange nonchaotic attractor in a two-frequency quasi-
periodically driven, buckled, magnetoelastic ribbon experiment. Scaling behavior in the Fourier ampli-
tude spectrum is observed in agreement ~ith predicted scaling behavior for strange nonchaotic attrac-
tors. Dimension measurements also support the existence of a strange nonchaotic attractor.

PACS nUmbers: 05.45.+b, 75.80.+q

Recently, much attention has been given to dissipative
dynamical systems with quasiperiodic driving terms.
These systems are a natural extension of periodically
forced systems, but offer richer dynamical possibilities.
In a recent series of papers' it was shown that two-
frequency quasiperiodically forced systems can exhibit a
new class of dynamical behavior which the authors term
strange nonchaotic. In this instance the word strange
refers to the geometry of the underlying attractor as ex-
hibiting a fractal structure, while the word nonchaotic
refers to the particular dynamics of orbits on the attrac-
tor. A chaotic attractor is an attractor for which nearby
orbits diverge exponentially in time, displaying sensitive
dependence on initial conditions (at least one positive
Lyapunov exponent). A nonchaotic attractor, however,
is an attractor for which nearby orbits typically do not
diverge exponentially in time (no positive Lyapunov ex-
ponents). Consequently, a strange nonchaotic attractor
is an attractor that is geometrically strange, but for
which nearby trajectories do not diverge exponentially.

It has been shown that strange nonchaotic attractors
are typical in quasiperiodically forced systems. Here,
typical means that the attractors exist over sets of posi-
tive measure in parameter space. Thus precise parame-
ter tuning is not necessary in order to observe these at-
tractors in experiments. In a previous Letter it was
shown that transitions between two-frequency quasi-
periodicity and strange nonchaotic behavior in a damped,
quasiperiodically driven pendulum equation can be asso-
ciated with transitions from stop band to (Anderson) lo-
calized solutions of the Schrodinger equation with a
quasiperiodic potential. While there are reports of the
transition to chaotic behavior in experimental systems
that are quasiperiodically forced, the identification of
a strange nonchaotic attractor in an experimental system
has not been reported. In this paper we present the first
report of a strange nonchaotic attractor in an experiment
and the first verification of the predicted power-law scal-
ing of spectral components for such an attractor.

In order to identify strange nonchaotic attractors in

experiments, we need to identify the potentially measur-
able signatures that characterize these attractors. In
particular, we discuss below the Fourier amplitude spec-

tra of time series, Lyapunov exponents, and fractal di-
mensions.

Fourier amplitude spectra —The . discrete-time Four-
ier amplitude spectrum ~S(f) ~

as a function of frequency
f for a time-varying quantity is the magnitude of the
Fourier transform of the discrete-time series obtained by
sampling the quantity at one of the two driven frequen-
cies of the quasiperiodic forcing. In practice any 8 func-
tions contained in ~S(f)~ acquire a width and a finite
peak value (e.g. , due to the finite duration of the time
series). A peak is defined as a local maximum in the
discrete spectrum. Define the spectral distribution func
tion N(o) as the number of peaks ~S(f) ~

with amplitude
greater than a. Distinct scaling relations for N(o) have
been predicted for two-frequency quasiperiodic attrac-
tors, three-frequency quasiperiodic attractors, and
strange nonchaotic attractors. These relations are
respectively N(a )—In(a ), N(tr) —[ln (cr)], and
N(cr)-tr ', I &a &2.

Lyapunov exponents. —In the case of two-frequency
quasiperiodic forcing there are two Lyapunov exponents
that are trivial in the sense that they are identically zero
by virtue of the two forcing frequencies. Let the
Lyapunov exponents X; be ordered by size,
~ k3 ~ . We then have the following possibilities:
(I) two-frequency quasiperiodic attractors, X~ =F2=0
& l3', (2) three-frequency quasiperiodic attractors,

A3 =0 & k4, (3) chaotic attractors, Xt & 0; and
(4) strange nonchaotic attractors, the same as two-
frequency quasiperiodic attractors. For our system we
were unable to obtain reliable results for the nontrivial
Lyapunov exponents (except for k~ in the chaotic case)
by direct application of standard techniques (since the
exponents would all be negative). Nevertheless, reliable
indirect evidence is available from measurements of the
in formation dimension.

Dimension. —The information dimension of an attrac-
tor is defined as d; =lim, p [I(e)/In(1/s)), where the at-
tractor has been covered by cubes from a Cartesian
grid of spacing c in the phase space. Here I(e)
= —g;-~ p;In(p;), where p; is the measure of the at-
tractor in the ith cube of the cover. In experiments p;
can be estimated as the fraction of time that a finite-
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FIG. 1. Surface of section of output voltages V, = V(t, ) vs

(nf2/f ~)( mod 1) for H~ =0.71 Oe and Hq =0.53 Oe.

duration orbit spends in cube i Th. e presence of two-

frequency quasiperiodic forcing guarantees that any at-
tractor will be at least two dimensional. If the attractor
is chaotic there is at least one unstable direction and the
dimension should hence be at least three. Thus, if we

calculate the information dimension and it is less than
three (d; & 3) the attractor is nonchaotic. If the
Kaplan-Yorke conjecture (which gives the information
dimension in terms of the Lyapunov exponents' ' ') ap-
plies for our strange nonchaotic attractor, then d; =2.
(Note that d; 2 does not rule out fractal structure. In

particular, it has been claimed that the capacity dimen-

sion d, is strictly greater than the information dimension
for strange nonchaotic attractors. )

Combining spectral-distribution scaling and dimension
measurements one can systematically support or rule out
the existence of each of the four above-mentioned attrac-
tors in an experimental time series for a two-frequency
quasiperiodically forced system. In practice the dimen-
sion measurements are performed on surface-of-section
data, reducing all of the dimensions discussed in the pre-
vious paragraph by one. We use a tilde to denote the di-
mension in the surface of section.

To summarize, the information we will be using is as
follows. Two- (three-) frequency quasiperiodicity gives

d; =1 (d; =2) with N(a)-ln(a) (N(cr)-[ln(a)] ). A
strange chaotic attractor occurs only if d; ~ 2, and a

strange nonchaotic attractor occurs if d, ( 2 with
N(a)-a

The experimental system consisted of a gravitationally
buckled, amorphous magnetoelastic ribbon. The ribbon
material belongs to a new class of amorphous magneto-
strictive materials that have been found to exhibit very
large reversible changes of Young's modulus E(H) with

the application of small magnetic fields. ' '3 The ribbon
was clamped at the base to yield a free vertical length
greater than the Euler buckling length, thus giving an in-

itially buckled configuration. The ribbon was driv-

en with a vertical magnetic field having the form H
=HI cos(2' tr)+H2cos(2nfqt). The magnetic-field
amplitudes were typically set in the range 0.50-0.90 Oe
after compensating for the Earth's magnetic field. A
sensor measured the curvature of the ribbon near its
base. Other details of the experimental system can be
found in Refs. 12 and 13.

The data were time series of voltages V(r) acquired
from the output of the sensor. Voltages were sampled at
the drive period of the Hl signal (times t„=n/f~) by
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FIG. 2. (a) Surface of section of output voltages V, =V(t, )
vs (nf2/f~)(mod 1) for Hq=0. 80 Oe (5000 data points). (b)
Same plot on diAerent voltage scale indicating structure on
several length scales.

triggering off the synthesizer producing the Hl signal.
Time-one map data were obtained for approximately 3 h

(5000 points) after discarding the initial 1 h of data to
allow the ribbon motion to settle onto an attractor. Pa-
rameters were set at Hl =0.71 Oe, fl =0.5 Hz, f2=yfl,
where y=(J5 —1)/2 is the inverse of the golden mean,
and H2 was varied as our control parameter. Inherent
timing and drift problems were found to be insignificant
for data runs of up to 4 h.

Surfaces of section were constructed by plotting out-
put voltages V„—= V(t„) vs 8„—= (nf2/fl)(mod 1). For
H2=0. 53 Oe we found (Fig. 1) the attracting orbit in

the surface of section to lie on a smooth curve, indicating
quasiperiodic motion on a two torus. For 02=0.80 Oe
the attracting set shows a fine-scale structure as can be
seen on several length scales [Figs. 2(a) and 2(b)]. We
present evidence below that this is a strange nonchaotic
at tractor.

In Fig. 3 we have plotted the Fourier amplitude spec-
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FIG. 3. Fourier amplitude spectra jS(f) j of output voltages
V„vs frequency f in Hz corresponding to (a) Fig. 1 and (b)
Fig. 2.
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FIG. 4. Spectral distributions of the spectra of Figs. 3(a)
and 3(b). The N(o) spectrum for the strange nonchaotic case
has only been plotted for cr&0.01 to avoid saturation of JV(cr)

due to the base line of (S(f) ( at (S(f) (
-0.01. This saturation

presumably occurs from the width acquired by 8-function spec-
tral components contributed either by noise broadening of the
synthesized frequencies f~ and f2 or by the finite length of the
time series.

tra of the two time series corresponding, respectively, to
the surfaces of section of Fig. 1 and Fig. 2. Figure 3(a)
shows the spectrum of the two-frequency quasiperiodic
attractor to be concentrated on a discrete set of frequen-

cies, while the spectrum shown in Fig. 3(b) exhibits a
richer harmonic structure and notably higher base line.

Figure 4 displays the spectral distribution function
N(rr) for the two spectra shown in Figs. 3(a) and 3(b).
The spectrum in Fig. 3(a) exhibits the scaling N(o)
-ln(o). In contrast, the spectrum of Fig. 3(b) exhibits
the scaling N(rr) —o ' with the best fit' giving
a=1.25(~0.05). These results are in agreement with

the theoretical predictions given in Refs. 2 and 3. The
spectra shown were calculated using a Parzen window

(cf. Ref. 2); however, we found N(a) to be unaffected

by the particular choice of window function. A forth-

coming simplified model for the ribbon in the form of a
double-well Duffing equation with parametric quasi-

periodic driving terms also displays spectral-distribution
scaling in qualitative agreement with these results. '

Information-dimension calculations' have been per-
formed for the attractors presented in Figs. 1 and 2. In
each case a maximum of 1000&1000 equally sized grid
boxes were used to cover the attractor. The plot of I(e)
vs In(1/e) for Fig. 2 is shown in Fig. 5. The slope is an

estimate of the information dimension d;. A least-

squares fit to the data yields d;—= 1.3 [excluding the re-

gion beyond In(1/e) ) 5.5, whose values are less reliable
due to the finite length of the time series]. ' The
relevant point is that d; is clearly well below 2. Thus we

conclude that the attractor is nonchaotic. (Similar re-

sults are obtained from the simplified model of the rib-
bon in Ref. 15.)

In order to obtain a feel for the dynamics on the
strange nonchaotic attractor, we have examined the be-

Ln(1/a)

FIG. 5. Plot of I(e) vs ln(1/e) for the strange nonchaotic at-
tractor (using all 5000 data points).

havior of the separation between two nearby points of
Fig. 2. We take our data string (V„,8„), where

8„=(nf2/fi)(mod 1), and choose two points, (VJ, H~)

and (VJ, 8~), such that ~8J
—

8J~ is small. We then plot
the difference in the vertical coordinate b =

~ Vl ~
—V/+ ~

vs m in Fig. 6 (note that ~8j ~ —8J+ ~
does

not vary with m). We see from Fig. 6 that b' displays a
characteristic behavior wherein it is small for long
stretches of time, increases to a large value for a very
short time, and rapidly returns to small values. This is

fundamentally different from what one sees for a chaotic
attractor (wherein nearby points move exponentially
apart and then execute motion that is essentially un-

correlated, e.g. , Ref. 15; close returns are far less prob-
able for this case). The behavior observed in Fig. 6 is in-

dicative of the structure of the strange nonchaotic attrac-
tors observed in Refs. 1-5, where it was shown that these
attractors are everywhere discontinuous functions of the
horizontal coordinate [i.e., in our case V=F(8) where
F(8) is discontinuous].

Finally, we note that strange nonchaotic attractors,
similar to that in Fig. 2, were observed throughout the
interval 0.75 Oe &H2 &0.90 Oe, thus verifying their
predicted existence over a set of positive measure in pa-
rameter space. '

In conclusion, the surface-of-section plots, scaling of
the spectral distribution function, and information-
dimension measurements provide compelling evidence
that we have observed a strange nonchaotic attractor in a
quasiperiodically driven magnetoelastic ribbon experi-
ment. Future work will address the mechanism by which
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FIG. 6. Plot of b —= iVJ'+ —V, + i vs m (voltages V, have
been scaled to the interval [0,1]).

this transition occurs.
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