PHYSICAL REVIEW
LETTERS

VOLUME 65

30 JULY 1990

NUMBER 5

Eigenvalue Statistics of Distorted Random Matrices

Taksu Cheon
Institute for Nuclear Study, University of Tokyo, Midori-cho 3-2-1, Tanashi-shi, Tokyo 188, Japan

and Department of Physics, Hosei University, Fujimi 2-17-1, Chiyoda-ku, Tokyo 102, Japan

(a)

(Received 10 April 1990)

A numerical study of a set of random matrices which interpolate Poisson and Gaussian orthogonal en-
sembles is reported. The result indicates that the transition from Poisson to Wigner distributions for the
nearest-level spacing does not depend on the details of the random-matrix parametrization and is essen-
tially governed by a single parameter. Brody’s one-parameter interpolation formula is found to describe

the transition rather well.

PACS numbers: 03.65.Ge, 05.40.+j, 05.45.+b

The random-matrix theory of Dyson and Mehta' at-
tracted renewed attention in recent years as the study of
chaotic motion in quantum system progressed. The
Wigner distribution for the nearest-neighbor level spac-
ing, which is predicted from the random-matrix theory,
is widely regarded as a prime candidate for the quantum
signature of chaotic dynamics.>® A number of studies
indicate that the integrable system, on the other hand,
shows Poisson level-spacing distribution when quan-
tized.*> The transition between these two extremes has
been the subject of several works.®™'® Although there
are some conjectures on ‘‘universality” in the transition
of level-spacing distribution from Poisson to Wigner
form, we have yet to identify the suitable order parame-
ter to describe such a transition. Only after having
quantitative description for such a transition, we should
be able to discuss its possible relation to the transition
from integrable to chaotic motion in the classical coun-
terpart.

In this Letter, we attempt to quantify the description
of quantum level statistics. To that end, we perform nu-
merical experiments of two sets of random matrices
which interpolate the diagonal random matrix and the
invariant orthogonal random matrix. We look at the
moments of the nearest-level-spacing distribution ob-
tained by diagonalizing our model random matrices.

The result of this numerical study seems to indicate
that there is indeed a class of random matrices which

shows a single pattern for the shape change from Poisson
to Wigner distribution, and a single parameter, which we
identify as the “effective rank™ of matrices, controls the
transition. Curiously enough, the one-parameter inter-
polation formula of Brody'' is found to describe this
universal transition rather well, at least good enough for
the typical statistical error encountered in both numeri-
cal calculations and experimental measurements.

In random-matrix theory, the Hamiltonian of a physi-
cal system is replaced by a matrix whose elements are
distributed randomly. The introduction of the concept of
random matrix has several motivations. If we assume
that the statistical property of eigenstates of a Hamil-
tonian is determined by the statistical distribution of its
matrix elements, then the abstract random matrix is a
useful tool to identify the generic property of physical
systems which is independent from the peculiarity of
each system. Of course, it should be remembered that
the relevance of the random matrix to the physical Ham-
iltonian is, apart from its phenomenological validity, still
an open question, which is only partially clarified.'> A
random matrix also helps to reduce the numerical bur-
den, since obtaining good statistics is far easier in ran-
dom matrices than in physical systems.

We start from the observation that the random scalar
number yields the Poisson distribution, and the random
rank-2 tensor with real symmetric component; i.e., the
Gaussian orthogonal random matrix leads to the Wigner
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distribution for the nearest-neighbor spacing of its eigen-
states sequence. A sparse random matrix with blocks of
zero or small numbers in off-diagonal elements can be
thought of as the one interpolating these two extremes.
By reordering the state indices, one can move these
blocks of small elements to the peripheral area of the
matrix. Thus we consider a set of disordered random
matrices in the form

H,=R,F(|i—j]|) (1)

as a model to study the transition between Poisson and
Gaussian orthogonal ensembles. Here the symmetric
matrix R,, has the Gaussian distribution

R;
_L__exp[___f_
\/271(1“‘5,‘]') 2(l+6’j)

and the envelope function F(|i—j|) specifies the nature
of the distribution. The restriction on F that it depends
only on the difference of indices |i—j | can be justified
by requiring the ensemble of matrices {H{]} to be invari-
ant with respect to the reordering of state indices. We
further require that the random matrix H;; has only one
global scale; i.e., we exclude such matrices as linear com-
binations of diagonal random matrices and symmetric
random matrices, because such matrices have no well-
defined limit when the size of the matrix approaches
infinity. Two limits, Poisson and Gaussian orthogonal
ensembles, are obtained as special cases with F(k) =6,
and F(k) =1, respectively. We do not lose generality by
assuming F(k) to be a simply decreasing function of &,
again because of the possibility of rearranging the state
indices. Seligman, Verbaarschot, and Zirnbauer’ pro-
posed the envelope function of Gaussian form

P(R,‘j) = s (2)

1 k?
Flk)=——"F—exp| —— |, (3a)
(2ra?)'? p[ 202 ]
where o is the parameter controlling the width of the
band of “significant” matrix elements around the diago-
nal line. They were able to fit the eigenvalue distribution

TABLE I. Six lowest moments of level-spacing distribution
in two limiting cases, Poisson and Wigner distributions.

n Poisson Wigner
2 2.000 1.273
3 6.000 1.910
4 24.000 3.242
S 120.000 6.079
6 720.000 12.385

of certain physical systems quite well with this rather ar-
bitrary choice. In order to check the sensitivity of eigen-
state statistics to the shape of the envelope, we also test
the form

Fk)=06(n—k), (3b)

which gives a sharp cutoff for nonzero matrix elements
within a band along the diagonal line of width 2n+1.
For both parametrizations, Egs. (3a) and (3b), 6 =0 and
n=0 give the Poisson distribution, while o=c0 and
n=o0 correspond to the Wigner distribution. In reality,
for a finite number of the dimension of matrix N, the
conditions o= N or n= N are enough to get the Wigner
limit.

Diagonalization of the matrix Eq. (1) gives the se-
quence of eigenvalues {E;}. There are arguments which
stress the importance of looking at eigenfunctions rather
than the eigenvalues for the signature of quantum
chaos.!? But that subject is beyond the scope of this
work. In order to obtain the level-spacing distribution,
we have to rescale the spectrum {E;} by unfolding the
global level density 7(E;). This is achieved' by defining
the regularized level sequence {g;} as

€[=P_I(E,'). (4)

The average level spacing of the level sequence {g} is
uniform and is normalized to be 1. The nearest-level
spacing Pp(x), which is the central quantity in this
Letter, is defined as

P(x)dx =

number of pairs (g, +1,¢;) that satisfy x < (¢g,+, —¢,) <x+dx

(5)

total number of pairs sampled

It is not practical to look at the full range of the distribu-
tion P(x) when one deals with a large number of level
sequences. One natural way to characterize the distribu-
tion P(x) is by looking at the moments of distribution
M (n) which are defined by

M(n)=f0°°dxx~p(x). 6)

Usefulness of moments M (n) is seen by calculating the
values of Poisson and Gaussian orthogonal ensembles.
In Table I, we list from M (2) to M(6). [By definition,
M (0) and M(1) are both equal to 1.] We see that the
values of M(n) are good indicators of the shape change
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' from Poisson to Wigner distributions.

We are now in the position to state the question of
“universal transition” in quantitative terms. Is there any
regular pattern in the change of M(n) when the
random-matrix parameter o or n varies? In the absence
of the general theory of level spectrum, the only way to
answer this question is through numerical experimenta-
tion.

We diagonalize the distorted random matrices of both
Gaussian- and 6-type envelopes numerically. We took
four values 200, 300, 400, and 500 for the dimension of
the matrices N. The global level density n(E;) is ob-
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tained by fitting the actual levels with polynomials of or-
der up to 8 for each matrix. We collected from 40 to
100 matrices to have roughly about 20000 levels avail-
able to calculate moments M (n) of the level-spacing dis-
tributions for each value of o or n. About ten different
values between 0 and 50 are chosen for o and 7.

The numerical results are summarized in Figs.
1(a)-1(d). The third, fourth, fifth, and sixth moments
are plotted against the second moment in each graph.
Open symbols indicate the values of Gaussian form en-
velope, Eq. (3a), and solid symbols, the 8 cutoff, Eq.
(3b). Different shaped symbols are for different matrix
dimensions.

One sees from the figures that ensembles of both
Gaussian- and 6-type envelope, and of different matrix
dimensions all result in a common correlated change of
different moments. This means that there is a unique
path in the transition from Poisson to Wigner distribu-
tions for random-matrix ensembles of differing types.

In some literatures,®'* the level spacing has been
classified and analyzed in terms of the Brody distribu-
tion, '

B+1
Pr)=(B+1)|T gi—f xP
B+1
Xexp{— r ‘g%— x} } @)

where the single parameter f controls the transition from
Poisson (8=0) to Wigner (3=1) distributions. Since
this function was introduced as a purely artificial inter-
polation formula, it has been somewhat puzzling to see
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this function being capable of fitting the experimental
data as well as theoretically calculated levels. The
dashed lines in Figs. 1(a)-1(d) are the predictions for
the relation between various moments with the Brody
distribution, Eq. (7). Surprisingly, these lines go
through the ‘‘universal curve” formed by distorted
random-matrix ensembles. Although these figures still
do not give the physical nor mathematical justification of
the Brody distribution, they do give an explanation for
its phenomenological validity.

Since the parameters controlling the bandwidth ¢ and
n are attached to the specific (and rather arbitrary)
choice of the falloff, they are not suitable for seeing pos-
sible universal transition directly. We define the
“effective rank” r. of a matrix by

re=logM/logN , (®)

where N is the dimension of the matrix, and M is the
“effective number” of matrix elements defined as

M- [}?§<|H,j|>]/

where () denotes the ensemble average. For the Poisson
ensemble, one gets r. =1, and for the Gaussian orthogo-
nal ensemble, r. =2. For nonzero finite values of o or n,
r. takes the fractional value between 1 and 2. We em-
phasize here that Eqgs. (8) and (9) are intended not as
rigorous definitions but rather as a working hypothesis
for a possible scaling parameter. In Fig. 2, we plot the
second moment M (2) versus the effective rank r.. All
values indeed seem to form a single narrow band, which
becomes almost a single curve toward the Wigner limit,
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FIG. 1. Relation between various moments of nearest-neighbor level spacings: (a) second vs third moments, (b) second vs fourth,
(c) second vs fifth, and (d) second vs sixth. Open symbols show results of the Gaussian envelope, Eq. (3a), and solid symbols, the 6
envelope, Eq. (3b). Shapes of the symbols signify the matrix dimensions as shown in the graph. The dashed line is the prediction of

the Brody distribution.
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FIG. 2. Second moment of nearest-level-spacing distribution
vs effective rank of matrix ensemble defined in Egs. (8) and

).

r.=2. Combining this scaling with the correlations
among different moments found in previous graphs, we
conclude that there is a wide class of distorted random
matrices whose eigenvalue spacing shows the common
pattern of transition from Poisson to Wigner distribu-
tion. The study of Seligman, Verbaarschot, and Zirn-
bauer’ can be interpreted as showing the existence of a
physical system (two-dimensional coupled anharmonic
oscillator) which actually follows this universal curve.
Clearly, more examples should be analyzed before draw-
ing any conclusion about the relevance of our random-
matrix result to the physical world.

Although we tested just two examples, the results indi-
cate that it is very unlikely to get a significant deviation
from the universal curve by choosing other forms for the
envelope function as long as it is smooth and well behav-
ing. We are now checking this point with various forms
of F(k). A more fundamental problem is that our
prescription for specifying the distorted random matrix is
rather loosely formulated, guided only by intuitive argu-
ments without any formal derivation. If more numerical
experiments support the universal scaling seen in our ex-
amples, the problem of formulating a general theory of
distorted random matrices will become a more urgent
one.

With all the progress in the study of nonintegrable
systems in quantum physics through various numerical
experimentations in the last decade, our understanding
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of quantum signatures of chaotic dynamics is still largely
qualitative. It is only quite recently that people started
to focus on such quantitative relations as scaling among
various indicators of classical and quantum chaos.'%!?
We are in need of identifying the quantities which
characterize the degree of order, namely, the order pa-
rameter. We hope that our preliminary study here
serves as a stepping stone for such an ambitious goal.
The author expresses his gratitude to Professor Krish-
na Kumar for his careful reading of the manuscript and
the valuable comments. He also thanks Dr. Hidehiko
Tsukuma for his helpful discussions. Numerical compu-
tation was done on VAX6000/440 of Meson Science
Laboratory, Faculty of Science, University of Tokyo.
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