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We study the effects of hydrodynamic interactions on the diffusion of hard spheres in concentrated
suspensions. Using a multiple-light-scattering technique that measures the early-time behavior, we find
Desi/Do=1—1(1.8610.07)¢, where ¢ is the volume fraction of spheres, Dt is the effective diffusion
coefficient, and Dy is the free-particle diffusion coefficient. This agrees with the linear ¢ term calculated
theoretically for short-time self-diffusion. The short-time diffusion coefficient is also found to be con-

tinuous across the freezing transition.
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A system of spheres interacting only through their in-
ability to occupy the same space has served as a para-
digm for our understanding of the structure and dynam-
ics of liquids, solids, and glasses. Suspensions of these
“hard spheres” have likewise served as a paradigm for
the calculation of hydrodynamic interactions between
colloidal particles. As the volume fraction of suspended
particles is increased, simple single-sphere hydrodynamic
theories for the transport coefficients fail and many-
sphere hydrodynamic interactions become important. Po-
tential interactions, such as the excluded-volume hard-
sphere interaction, indirectly influence the kinetics and
mobility of the suspension through their effects on the
equilibrium thermodynamics and structure. By contrast,
velocity-dependent hydrodynamic interactions directly
affect the kinetics and mobility and play no role in the
thermodynamics and structure. The hydrodynamic in-
teractions in concentrated suspensions are traditionally
the hardest to determine theoretically and experimental-
ly and are the primary subject of this paper.

One of the most direct probes of hydrodynamic in-
teractions is the short-time self-diffusion coefficient of a
tagged sphere. For times much less than the time it
takes a particle to diffuse the mean interparticle separa-
tion, a tagged sphere does not contact other spheres and
the potential interactions between spheres are negligible;
only the hydrodynamic interactions play a role. At
longer times, however, the motion of a sphere is impeded
by collisions with other particles which it must *“‘get
around” and then the self-diffusion involves a combina-
tion of structural and hydrodynamic effects. Thus, hy-
drodynamic interactions are probed most directly in the
short-time regime.

Hydrodynamic interactions also play a crucial role in
the collective diffusion of colloidal particles. Consider a
concentration fluctuation of wave vector q. The suscepti-
bility of the system to such a fluctuation is directly relat-
ed to S(g), the static structure factor. The relaxation of
the system back to uniform equilibrium will be inversely

proportional to S(g).' Relaxation of the fluctuation does
not require particles to “get around” neighbors but parti-
cle motion is still impeded by mutual hydrodynamic in-
teractions. Thus, the cooperative diffusion coefficient,
which is a measure of relaxation of spontaneous fluctua-
tions, is affected by both potential and hydrodynamic in-
teractions. However, at short times, the effect of the po-
tential interactions for hard-sphere systems can be ac-
counted for trivially through S(g)."* Once again the
short-time dynamical behavior can be used to probe the
hydrodynamic interactions between spheres.

For concentrated hard-sphere systems, the collective-
diffusion coefficient D.(g) exhibits a strong g depen-
dence. For gR <1, where R is the particle radius, the
hard-core repulsive potential leads to fast initial relaxa-
tion and a relatively large value of D.(g). For gR>1,
the relaxation of concentration fluctuations is determined
primarily by single-particle motions and D.(g) should
approach the short-time self-diffusion coefficient mea-
sured in tracer experiments.

To measure short-time particle diffusion we employ a
dynamic light-scattering technique, diffusing wave spec-
troscopy (DWS), in the transmission mode.® In DWS,
the temporal fluctuations of multiply scattered light are
analyzed to obtain particle-diffusion coefficients.*® By
utilizing the transmission mode, particle motion is
probed over significantly shorter time and length scales
than is possible with either traditional single-scattering
techniques or other multiple-scattering geometries. Be-
cause light scatters from concentration fluctuations, the
fundamental quantity DWS measures is the collective-
diffusion coefficient D.(q). However, since the light is
scattered many times, all scattering angles are probed
simultaneously, and D.(q) is effectively averaged over a
wide range of q. As we show below, this averaging
strongly weights the high-g limit so that the diffusion
coefficient measured by DWS approaches the self-
diffusion coefficient. Thus, using two sets of particle
sizes, we measure an effective diffusion coefficient D.g
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and find that, to first order in the volume fraction of
spheres ¢, it is well described by

Deg/Do=1—(1.86£0.07)¢, (1)

for 0.03 < ¢ <0.45. The coefficient of the linear term is
in excellent agreement with calculations of the self-
diffusion coefficient by Batchelor’ who found 1.83¢.
When compared with tracer-diffusion measurements of
van Megan et al.,? these measurements also indicate that
the hydrodynamic corrections to the early-time self- and
cooperative-diffusion coefficients are the same.

The samples used in our studies were aqueous suspen-
sions of polystyrene spheres (polyballs) purchased com-
mercially. Polyballs are often used as a model “soft-
sphere” suspension since they are negatively charged in
suspension and interact via a screened Coulomb repul-
sion. However, the screening length is inversely propor-
tional to the square root of the density of ions in the elec-
trolyte solvent and is easily controlled. The polyballs
used here were cleaned by ion-exchange resins and then
sufficient HC] was added to reduce the screening length
to ~40 A. The diameters of the spheres, as measured
by dynamic light scattering (DLS) on very dilute solu-
tions, were 0.412 and 0.913 um. Thus, the screening
length was considerably smaller than the particle diame-
ter and resulted in less than a 2% correction to the hard-
sphere approximation, which is less than the polydisper-
sity of the spheres (~5%).

Stock suspensions of concentrated monodisperse poly-
balls were prepared by first centrifuging to ¢==0.55.
(Near 0.50 the suspension was in the crystalline state as
readily observed by the Bragg scattering of visible light.)
Portions of the stock suspensions were then diluted to
prepare a series of samples having volume fractions
ranging from 0.03 to 0.55. The volume fractions were
determined to within £ 0.005 by weighing a fraction of
each sample before and after drying.

Concentrated suspensions of polyballs whose diameters
are comparable to the wavelength of light are typically
white and opaque. As such, they are not suitable for
conventional DLS studies. However, they are ideally
suited for DWS which can be used only in the limit of
very strong multiple light scattering. In the transmission
geometry which we employ, DWS has the additional ad-
vantage that only the short-time diffusion of the suspend-
ed particles is measured. In DWS, as in DLS, an appre-
ciable decay in the measured temporal autocorrelation
function of the scattered light occurs when the path
length of scattered photons from a given sequence of par-
ticles changes by roughly one wavelength. In an optical-
ly thick sample, each photon must be scattered many
times (typically 10> to 10*) before being detected; the
difference in path length then results from the sum of
displacements of a large number of particles. Thus, the
movement of a typical particle is much less than the
wavelength of light. In our measurements, a typical par-

ticle is estimated to move less than 50 A before the auto-
correlation function decays. This distance is much less
than the mean interparticle spacing so that we always
measure the short-time diffusion of the polyballs.

In our measurements, a laser beam (Lo =488 nm) was
expanded and collimated to uniformly illuminate a I-
cm-diam spot on one side of a cuvette containing the
polyball suspension. The light emerging from the oppo-
site side was detected by a photomultiplier, and the static
intensity and temporal autocorrelation function were
measured by a correlator. The thickness of the sample
cell was varied from 0.2 to 2 mm for samples having
different volume fractions. The ratio of the sample
thickness to transport mean free path, L//*, ranged from
12 to 35 ensuring multiple scattering.

In the single-scattering case, light is scattered by con-
centration fluctuations and DLS measures the coopera-
tive diffusion of polyballs.” The cooperative-diffusion
coefficient D.(gq) is given by the bare Stokes-Einstein
diffusion coefficient Dy renormalized by the susceptibili-
ty, as given by the static structure factor S(g),"? and by
the hydrodynamic interactions via a factor H(g):'°

D.(q) =DolH(g)/S(g)]. 2)

Thus, in the short-time limit, the decay of the electric-
field autocorrelation function in DLS is given by

(E)E*(1))=S(g)expt —q>DotH(q)/S(g)}. (3)

We can view the multiple-scattering process in an in-
teracting system as a succession of isolated scattering
events from correlated regions of spatial extent & and
separated by the photon mean free path / where, in gen-
eral, £ <1.*>!! For a large number of scattering events,
n, the contribution to the decay of the autocorrelation
function from paths of length s =n/ is given by the prod-
uct of the single-scattering autocorrelation functions,
averaged over all angles, exp{—<{(g2DotH (q)/S(g))n},
where (- --) denotes the angular average weighted by
the product of the particle form factor and the structure
factor, F(g)S(g).> To facilitate the calculation, we ex-
press the number of scattering events, n=s/1=(s/1*)
x (/*/1), in terms of the transport mean free path /*,
which is given by'?

2k¢ [F(q)S(g)da
Jq?F(@)S(g)da

where d Q is the solid angle element, ko=2x/A, and A is
the wavelength of light in the medium. The total auto-
correlation function, g,(t)=(E)E*(z))/|E(0)|?), is
obtained by summing the contributions of paths of all
lengths, weighted by P(s), the fraction of paths of length
s (determined by the geometry of the sample and the op-
tics). Performing the appropriate averages yields

_ o [H(Q] s
g1(1) fP(s)exp{ 2k§Dot IS@)] 1% ds, (5)

(4)

[*
T_.
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where [ - - - ] denotes

_JXx(@F(g)q*da
[x(g)] [F@aidn (6)

The only length scale entering Eq. (5) for the transport
of photons is /*, the length scale over which the direction
of photon propagation is randomized. Thus, the photon
path-length distribution function P(s) can be calculated
for a given scattering geometry using the diffusion equa-
tion for photons with appropriate boundary condi-
tions.>'3 It can be shown that for forward scattering
with a broad illumination the autocorrelation function

185

~ (L/I*+ 4 )Jx
(4 £ x)sinh(LVx/I1*)+ 4 Vx cosh(L/x /1*)
7

g1(1)

where x =6k§Dot[H (¢)1/[S(q)1=67/79. From Eq. (7)
we see that one effect of multiple scattering is to speed
up the decay of the autocorrelation function by a factor
of ~(L/1*)% In addition, the diffusion coefficient is
again modified by H(q)/S(q), as in the single-scattering
limit, but now suitably averaged over all scattering an-
gles because of multiple scattering.

In our experiment we measure intensity-intensity auto-
correlation functions (I(2)1(0))/<1(0))*=1+Bg, (1),
where B is a constant determined primarily by the collec-
tion optics and g,(7) is related to g;(z) by g(z)
= |g| () '2.

In Fig. 1 we plot the logarithm of the measured inten-
sity autocorrelation function, g>(7), for the 0.913-um
spheres versus normalized time (L//*)*z. The rate of
decay of g,(7) in these normalized-time units depends
only on the motion of the polyballs, and is independent of
L/1*. The three curves are for volume fractions of 0.08,

100 g
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FIG. 1. Autocorrelation function vs normalized time. The

measurements are for 0.913-um-diam polyballs at volume frac-
tions of 0.08 (triangles), 0.26 (circles), and 0.47 (squares), re-
spectively. The solid lines are the fits by Eq. (7).
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0.26, and 0.47. The autocorrelation function decays
more slowly for the more concentrated samples indicat-
ing a large reduction in the diffusion coefficient from the
free-diffusion value. Similar behavior is found for
0.412-um diam spheres. The solid lines in Fig. 1 are fits
by Eq. (7) with 19 as the only adjustable parameter.
The fact that the functional form fits the data precisely
indicates that there is no additional time dependence to
be found in Eq. (7) and that we are in the short-time
limit where the particle dynamics are purely diffusive.
This is equivalent to obtaining a single slope in the loga-
rithm of the correlation function versus time for a DLS
experiment, indicating a single relaxation time. For the
¢=0.47 sample shown in Fig. 1, the total motion of a
particle in the decay time is ~50 A.

In order to elucidate the specific role of the hydro-
dynamic interactions we analyze these experimental data
by defining an effective diffusion coefficient which retains
only the g-independent, short-range hydrodynamic ef-
fects,

Deg=DoH (o). (8)

This effective diffusion coefficient should be the same as
the short-time self-diffusion coefficient measured in
tracer experiments.® We obtain D.g by multiplying the
fitting parameter 7o ', obtained from our measurements
of g2(z), by fk§, where f is a numerical factor, f
=[S(g)1H()/[H(q)]. To compute these averages, we
use the Percus-Yevick'# form of S(g), the Beenakker-
Mazur'® form of [H(g)]1/H(oo) for hard spheres, and
perform the angular averages numerically.'® The angu-
lar average in Eq. (6) corresponds to a ¢ >F(g) weighting
over the interval from O to 2koR, and strongly em-
phasizes the high-g limit where f approaches 1. For
hard spheres, the peak in S(g) occurs at gR = 3; in our
experiments, 2koR =7.1 for 0.412-um-diam spheres and
2koR =16 for 0.913-um-diam spheres. Thus, in DWS
experiments on large spheres, f will be close to 1 and
only a weak function of ¢. In our experiments, 0.78 < f
< 1.0 for the 0.412-um-diam particles and 0.92 < f
< 1.0 for the 0.913-um-diam particles for 0 < ¢ < 0.45.
We calculate /* using the Mie scattering formulas for
the form factor F(g) and again use the Percus-Yevick
form for S(g).'? The ratio L/I* is also measured experi-
mentally by the transmission intensity of each sample
and is in good agreement with the calculations, but has
larger error bars.

The effective diffusion coefficient Deg, normalized by
the Stokes value Do (=kgT/6xnR), is plotted versus
volume fraction in Fig. 2 for all of our samples. We
have also plotted the short-time self-diffusion coefficient
from a tracer measurement reported by van Megan et
al.® The data sets are indistinguishable at low volume
fractions and are only slightly different at higher volume
fractions. This difference is probably due to the uncer-
tainties in the theoretical values of H(g)/H (o) required
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FIG. 2. Normalized effective diffusion coefficient vs volume
fraction. The solid squares and circles indicate the 0.412- and
0.913-um-diam particles, respectively. The solid line is the
theoretical fit using Eq. (1). The open circles are short-time
self-diffusion coefficients measured by van Megan et al. (Ref.
8).

to interpret our data. These uncertainties are most pro-
nounced at high volume fractions. Nevertheless, to
within the scatter of our data, the hydrodynamic correc-
tions to the short-time self- and cooperative-diffusion
coefficients appear to be the same. Our data can be
fitted reasonably well by the linear form in Eq. (1).
There have been many attempts to calculate the coef-
ficient of the linear ¢ term over the past several decades.
Only the most recent calculations’ obtain the value 1.83,
which is in excellent agreement with our results.

Finally, we note that D.g varies smoothly as the
liquid-solid transition is crossed at ¢ =0.50. The struc-
ture factor used to calculate D.g for these samples is the
Percus-Yevick form rather than the actual set of Bragg
peaks for the crystalline phase. Nevertheless, the con-
tinuity of the data across ¢ =0.50 illustrates the short-
time nature of our measurement. The particles in the
crystal move diffusively on a short time scale and only at
longer times feel the strong potential of the surrounding
cage of particles which traps them in a single cell of the
solid.

In conclusion, we have used DWS to measure the
effect of hydrodynamic interactions on the cooperative
diffusion of concentrated hard-sphere systems. In con-
trast to previous DLS tracer experiments, these DWS
transmission measurements provide an unambiguous
determination of the short-time diffusion coefficient, al-
lowing the effects of hydrodynamic interactions to be

probed directly. The corrections from the average struc-
ture factor to f confirm that DWS measures cooperative
diffusion. The agreement of the hydrodynamic correc-
tions to both cooperative and self-diffusion comes largely
from the fact that our measurements probe the
intermediate- to high-g regime. These experiments
clearly establish the weighting inherent in the quantities
measured by DWS, and make possible detailed compar-
ison with theoretical calculations.
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