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Geometrical and Topological Aspects of Electric Double Layers near Curved Surfaces
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The properties of electric double layers near closed-curved surfaces of arbitrary shape and genus are
obtained exactly within the Debye-Huckel approximation by means of multiple-scattering expansions.
Geometric and topological features of the electrostatics and thermodynamics emerge in a straightfor-
ward way through convergent expansions in powers of the ratio of the screening length to the principal
radii of curvature. Some consequences of these results for the electrostatic contribution to the stability
of structures of various shapes are considered.

PACS numbers: 82.70.—y, 03.50.Kk, 68.10.—m, 82.45.+z

A simply stated, but as yet incompletely solved prob-
lem in the physics of colloidal systems is as follows:
What is the free energy of a set of closed-curved surfaces
of arbitrary shape interacting through screened Coulomb
interactions? This question appears in a variety of con-
texts, from the study of colloidal crystals' and flexible
polyelectrolytes, to the theory of size and shape distri-
butions of micellar aggregates in self-assembling amphi-
philic solutions and the polymorphism of charged lyo-
tropic mesophases. The related issues of the distribu-
tion of screening ions and of electric fields near modulat-
ed surfaces arise in a variety of electrochemical con-
texts. 5 Of particular interest is the regime in which the
radii of curvature of the surfaces are large compared to
the electrostatic screening length, where one expects cer-
tain rather general geometric and topological features of
those surfaces to enter.

At the level of the Gouy-Chapman theory of electric
double layers, the answer to the question posed above
reduces to the solution of the Poisson-Boltzmann equa-
tion with specified boundary conditions, a difficult non
linear problem even for simple surface geometries. As a
first step toward such a complete solution it is clearly
desirable that there be a formally exact solution to the
linearized (i.e., Debye-Huckel) theory in the strong elec-
trolyte regime. Existing approaches to this linear prob-
lem fall generally into two classes; exact solutions for
particular, highly symmetric closed surfaces '' (e.g. ,
cylinders, spheres, etc.), and perturbative solutions'
for nearly planar shapes. Here, we present the exact
solution to the Debye-Huckel equation in the presence of
boundary surfaces of arbitrary shapes and topologies.

We may summarize our findings by noting that within
the Debye-Huckel approximation the excess free energy
associated with the ionic atmosphere is expressed in

terms of the electrostatic potential p(r) as

with e the electrolyte bulk dielectric constant, tc the in-
verse screening length, V the volume bounded by the sur-
faces S, and ti&+/jn the inward normal derivative to the
surface. The second expression is a functional of the sur-
face potential only and follows from the Debye-Hiickel
equation obeyed by tIt,

(V' —tc') y(r) =0,
and an integration by parts. In Eq. (l) the superscript
+ means that the surface is approached by continuity
from the bulk electrolyte, and takes care of possible
discontinuities at the surface.

Observe that Eq. (2) is simply a scalar version, for
imaginary frequencies, of the wave equation of classical
electrodynamics, also known as the Helmholtz equation.
Solutions of the latter for arbitrary geometries and rath-
er general boundary conditions (Neumann, Dirichlet, or
mixed) are known' in the form of "multiple-scattering
expansions. " These results are related to a famous
method of Neumann in electrostatics, ' and essentially
generalize the method of images to nontrivial geometries.
Such techniques have proven useful in the study of
Casimir forces between conductors of arbitrary shapes. "

Adapting these techniques to the screened electrostatic
problem we obtain the free energy of a set of surfaces of
arbitrary shape in the Debye-Hiickel regime. The con-
vergence of the resulting power series in the ratio of &

to the radii of curvature of the surface is assured' for
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real ~. As an illustration of the method, we obtain the
exact form of the second-order curvature corrections to
the free energy,

unknown surface dipole density p,

0
y(r) -J (ra)p(a)dS. ,

V=fp dS 1+ H—+ H + K+a b 2 c
4 x

(3)
where a is a point on the surface, and

Gp(rr') —= (I/4n ( r —r'
( )exp( —x ( r r' —

( )

is the free-space Green's function satisfying (V —x )
xGp(rr') —b (r —r'). Hereafter, we use the normal
derivative 8/8n, n, V„where n, is the inward normal
vector. It is readily verified that p satisfies the homo-
geneous Helmholtz equation (2) for r inside the electro-
lyte bulk. To enforce the boundary condition p(r P+ )

pp, where r approaches the surface point P from the
interior of V, we recall the fundamental singular proper-
ty of the normal derivative of Gp,

' '6

where fp is an amplitude, and a, b, and c are universal
dimensionless quantities associated only with the bound-
ary conditions. The mean and Gaussian curvatures are
defined in terms of the principal radii of curvature R~
and R i as H —,

' ( I/R ~
+ I/R2) and K I /R ~ R 2.

We consider three important physical situations: (i)
conducting surfaces held at fixed potential —the Dirich-
let problem; (ii) insulating "opaque" boundaries with
specified surface charge densities and for which the fields
do not penetrate into the interior —the Neumann prob-
lem; (iii) insulating thin "transparent" boundaries with
specified discontinuity of the electric field across the two
sides. In cases (i) and (ii) the near surface potential
satisfies 8&+/8n —4 an/ ,ewith o the local surface
charge density, while in case (iii) 8&+/8n —8& /8n—4xo/e. In all cases, we first determine p and then
the free energy (1).

The Dirichlet problem —For fixe. d potentials p+ ~s
=pp, the multiple-scattering expansion is obtained' by

t

writing p as a double layer pot-ential' due to an as yet

8Gp(P+ a)/8n, 8Gp(Pa)/8n, + —, b's (a —P); (5)

i.e., the left-hand side of (5) contains a surface distribu-
tion & bq (normalized with dS, ) in addition to the value
of 8Gp(Pa)/8n, n, V,Gp(Pa) at the surface. Calcula-
tion of p(P+) from (4) and (5) yields the exact integral
equation for p,

t' 8Gp
p (P) 2&p

—2„(Pa)p (a)dS, s .
n~

(6)

Standard vector calculus then yields the surface free en-
ergy (1) for the Dirichlet problem,

eppx 2

P(pp) dS.dSpn. npGp(aP)p(P)

8Gp 8Gp 8GpdS, dSpn, npGp(aP) 1
—

2& dS„(Py)+2 „dS„dSq (Py) (yb) —2, (7)
Y Y

where iterative use was made of (6).
The Neumann problem. —For specified surface charges, it is mathematically convenient to represent p as a single

layer potential,

q(r) -,Gp(rP)Z(P)dsp, (s)

the auxiliary charge density Z being determined by the boundary condition 8&+(a)/8n, = —4z (o)a/ ein terms of the
imposed surface charge density o(a). An integral equation for Z is constructed by determining the contact normal
derivative of (8), using the dual of Eq. (5) in which a change of sign of the distribution part occurs. We obtain

Z(a) = o(a)+2 (aP)Z(P)dSp.
Sz t' 8Gp

"s' 8n,

The free energy for fixed-charge problems is simply the surface integral

(9)

V(cr) = —,
' cxydS,~S (IO)

that is, the Legendre transform of (1) appropriate to fixed potentials. For uniform charge density op on all surfaces,
iteration of (9) with (8) yields the free-energy expansion

4xo.o 8Gp 8Gp 8GpP(op) = dS, dSpGp(alj) 1+2 dS„(Py)+2 dS„dSq (Py) (yb')+2~S &s "8np 8np n„

which is very similar to that of the Dirichlet case (7), up to the presence of n, np there, and alternating signs in the
scat terings. '
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For the transparent case in which, in addition, Eq. (2)
holds on both sides, the problem is equivalent to one ex-
tended to the full space, for a particular distribution of
sources a on the surfaces; hence the Green's function is

Gp and the potential p is still given by the screened
Coulomb (Yukawa) form (8), with Z simply replaced by
cr, which in turn obeys the required discontinuity equa-
tion cr = —(e/4z) (8&+/Bn —8& /Bn). The free energy
is given again by (10), and for uniform charge density harp

reads

4mop2

P, (op) = I dS, dSpGp(a/3) . (12)

The absence of a multiple-scattering expansion arises
from the transparency of the membrane. The free ener-

gy corresponds to that stored in the electrolyte on both
sides of the surface.

Curvature expansion Fro.—m the forms of (7) and

(11) we see that these expansions are ideally suited to
the study of weakly curved surfaces. Observe that the
scattering kernel reads BGp(aP)/Bn, =n, u,pGp(aP),
where u, p is the unit vector joining P to a, and a prime
indicates differentiation. For a strictly planar surface all

normal vectors n, are orthogonal to vectors u, p connect-
ing points on the surface and the expansions for the free
energies terminate after the first term. To evaluate the
various integrals that appear in (7) and (11) in the limit
of large radii of curvature relative to screening length,
note first that near any given point a on the surface, we

may construct a local coordinate system (Fig. 1) with

the z axis parallel to the normal n„and coordinates x
and y in the tangent plane along the directions of the
principal radii of curvature. In that local set of coordi-
nates the surface itself is described as

z.(x,y) = -' IX'/R[(a)+y'/R2(a)I+

the differential of the surface area is dSp= Jg dxdy,
with g =1+ [Vz, (x,y)I, and the scalar product of nor-
mals is n, np=g 'i. Then the convergent multiple-
scattering expansions (7) and (11) appear as expansions
in powers of the curvature, valid for xR~, xR2&&1. '

With these results and careful systematic Taylor expan-
sions of Gp and its derivative in (7), (11),and (12) along
the same lines as in Refs. 15 and 17, we arrive at the
form (3) of the free energy with the quantities fp and
the dimensionless triads (a, b, c) given by fp= —expp/
8x, ( —1, —I, —,

' ); fp =2ncrp2/ex, (1, -,', —!); fp
=&ca'/

ex, (0, —. ,
——,

' ), respectively, for the conducting, opaque,
and transparent surfaces.

For weakly curved surfaces, one of the most immedi-
ate results of the present analysis is a direct computation
of the electrostatic contribution to the bending energy of
membranes, a general expression for which is the
quadratic form' suggested by Winterhalter and Hel-
frich,

&ei= dS —k, +1 1

2 RI R2
1

Rp

1+k, +
RIR2

(14)

3so'p
k, =, , k„=—

25K'

KO'p2

Rp

2K'
(opaque),

(lsb)

KO'p2

k, =
4fr

ZCFp
2

=0 (transparent),
Rp

(I Sc)

corroborating partial results obtained by different
methods. ' Note that the spontaneous curvature term
1/Rp is directly linked to the contribution linear in H in

(3), and arises from the consideration of the electrolyte
energy on one side of the membrane only. If we add the
internal and external contributions with changes of signs
of the normals, these linear curvature contributions can-
cel, so 1/Rp =0 as in (1Sc), while the second-order terms
are simply doubled.

Topological equilibrium shapes. —As a consequence
of the Gauss-Bonnet theorem,

the integral running over the surface(s), with Rp the
spontaneous curvature radius. From the general expan-
sion (3), we obtain k, =fpb/2x, k„=fpc/x, and 1/Rp

ax/b. F—or the three types of boundary conditions,
this yields

ego — ego 1
k, =—,= —2x (conducting),

32@x
'

16@x' ' Rp

(1Sa)

4n" R

FIG. 1. A local coordinate system on a curved surface.

where n, is the number of connected surfaces and nI, is

the number of handles (genus), we obtain information
about the electrostatic contribution to topological aspects
of double-layer thermodynamics. ' For a single closed
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membrane immersed in the same electrolyte on both

sides, the total curvature energy is P, ~

=
~ fo ~

K y, with

y a dimensionless quantity,

(17)

tory at the University of Chicago, Grant No. DMR85-
19460. Service de Physique Theorique de Saclay is a la-
boratoire de 1'Institut de Recherche Fondamentale du
Commissariat a 1'Energie Atomique.

where r =(I/2tr) JqdSH is the total mean-square cur-
vature, and @=2(1 n—t, ) is the Euler characteristic of
the membrane. For the three physical cases listed above
we have (b', c') (1, —1);(3,—1);(1,—1) (the fixed po-
tential and transparent cases are the same). With (17)
we may draw some conclusions about the kinds of shapes
and topologies favored by electrostatic energies. Consid-
ering all possible topologies, we note that for any closed
orientable surface of arbitrary genus, r satisfies i ~ 2,
the equality being obtained for the round sphere only;
hence, p ~ p,„h

—4''nz. Since c' & 0, clearly the
sphere is the absolute minimum. If we constrain the to-

pology, some interesting results appear, 2' since the free
energy now depends only on r, and r cx: fdS/R is a con-
formal invariant; it is conserved by dilations of the sur-

face and also by all conformal mappings in three
dimensional space. From this, it may be shown that the
equilibrium shapes of a membrane with the torus topolo-

gy form a continuum, and, in the absence of other
effects, this degeneracy would lead to the phenomenon of
continuous conformal shape fluctuations For th.e spher-
ical topology, no such degeneracy exists, since conformal
maps of course conserve the round sphere and fix the
equilibrium shape uniquely.

In summary, we have obtained exact, convergent
multiple-scattering expansions for the electrostatic and
thermodynamic properties of charged and conducting
surfaces within the Debye-Hiickel regime, and derived
from them geometric and topological information about
the role of electrostatics in the elastic properties and sta-
bility of such surfaces. The formalism allows for a sys-
tematic study of the nonlinear corrections to Debye-
Hiickel theory, and promises to yield information about
the shape dependence of interactions between charged or
conducting surfaces. By its generality, it is applicable to
any solvent-mediated force between surfaces in which

the degree of freedom polarized by the boundaries is de-
scribed by a massive Gaussian scalar free energy.
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