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We show that the quantum spectra of simple systems whose classical counterpart is of a mixed nature,
i.e., partly regular with widespread chaos, manifest the effects of classical transport through imperfect
barriers. The partial barriers are characterized by the flux crossing them. We derive the relationship
between this flux and quantum Hamiltonian matrix elements. This in turn predicts new statistical fluc-
tuation properties for the spectrum and partial localization of the wave functions. The example of two

coupled quartic oscillators is given in detail.

PACS numbers: 05.45.+b, 03.65.Sq, 05.60.+w

The correspondence between quantum and classical
mechanics is still not fully understood even when there
are few degrees of freedom. This is especially true for
nonintegrable Hamiltonian systems as there is no
equivalent of Einstein-Brillouin-Keller quantization for
the chaotic regions of phase space. This notwithstand-
ing, we will show in this Letter that certain classical
transport information is manifest in the quantum spec-
trum and ultimately in the eigenfunctions. To do so we
derive a relationship between transport flux across par-
tial barriers and matrix elements of the quantum Hamil-
tonian expressed in appropriate bases. This relationship
has important consequences at finite energies. First of
all, there will be significant effects on the spectral fluc-
tuation properties of the system, and, second, the wave
functions will be localized in that they will not uniformly
explore the available chaotic phase space (in a semiclas-
sical sense) but will tend to respect the partial barriers.

The first consequence arises in the following way: The
fluctuation measures of chaotic systems are conjectured
by Bohigas, Giannoni, and Schmit (BGS) to be given by
the canonical random-matrix ensembles' which are
characterized by level repulsion and long-range rigidity.
We restrict our attention to systems having time-reversal
invariance so the appropriate classical ensemble is the
Gaussian orthogonal ensemble (GOE). In a generaliza-
tion, Berry and Robnik? suggested each isolated chaotic
region should be associated with an independent classical
ensemble, to be superposed, whose relative importance,
fi, is given by its relative phase-space volume. In this
picture the Hamiltonian is block diagonal, each block as-
sociated to a particular region. As a result of such a su-
perposition, the spectrum is less rigid and exhibits less
repulsion than if the regions are completely mixed.?
With small or moderate transport between the chaotic
regions one expects that the statistics will be intermedi-
ate between the two regimes (zero mixing or complete
mixing). It is our purpose to investigate the transition
from one to the other regime.

Generically, a classical Hamiltonian system will have
a mixed phase space with regions of regular motion, i.e.,
Kolmogorov-Arnol’d-Moser (KAM) islands, embedded
in widespread stochastic “seas.” There will be a regular
part of the spectrum* with which we must also deal.’
This we can do either by superposing the statistics of the
regular levels with the chaotic ones or by simply separat-
ing the regular spectrum from the total spectrum® allow-
ing a finer look at the remaining spectrum. We shall do
the latter.

For illustrative purposes, we study two coupled quartic

oscillators” whose Hamiltonian is given by H=p?/2
+V(q), where
V(g) =a()(gi/b+bgi+20qiq3). )

A specifies the coupling of the two modes, b (1) lowers
the symmetry from that of a square to a rectangle, and
a()) is an adjustable constant used in simplifying the
quantum calculations. By varying A we can select the
desired degree of chaos since the system is integrable for
A =0 and thought to be completely chaotic for A= —1.
A simplifying feature of such a homogeneuos potential is
that it is sufficient to make a classical study at one ener-
gy, say, E =1, and rescale the dynamics to understand
all other energy surfaces.

For the results presented here we take (A,b)
=(—0.35,n/4). There is a single chaotic sea and the
KAM islands occupy 12% of the phase space. Among
other reasons, this choice of the parameter is convenient
because due to the reflection symmetries and to the dy-
namics of the problem, each torus has a duplicate else-
where in phase space and we may then perform the sepa-
ration of regular levels via the induced quasidegeneracies
which originate from the quantization of two congruent
tori® (see Ref. 8 for details).

In watching chaotic trajectories, they often seem to
explore first one subregion of phase space, then another,
etc. In two-degree-of-freedom systems there are two
closely related possible mechanisms, cantori and/or is-
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FIG. 1. Partial-barrier construction illustrated on the Poin-
caré section g, =0. Starting from the hyperbolic fixed points
H\,H; one follows the stable and unstable manifolds to the pri-
mary homoclinic intersections 0,,01,0>,03. The shaded flux
loop maps in one iteration to the new loop as indicated. See
Fig. 2 caption and text for further explanation.

land chain partial barriers (broken separatrices).® In
this case, (—0.35,7/4), only the island chain barriers
play a major role. We believe most simple systems
should display this kind of behavior, although they may
be missed if not searched for explicitly.

To see how the island chains form partial barriers,
consider a short unstable periodic orbit created when an
originally (small denominator) rational torus broke
down. Associated with this orbit are a stable and unsta-
ble manifold which are tangent to the eigenvectors of the
monodromy matrix. These manifolds are two dimension-
al and can be used to partition the three-dimensional en-
ergy surface. It should be clear that neither two stable
nor two unstable manifolds ever cross, whereas a stable
and an unstable manifold may cross an infinite number
of times. Viewed from the surface of section the mani-
folds associated with a periodic orbit stretch smoothly
away until they cross at the primary homoclinic intersec-
tion point where they start to oscillate more and more
wildly (see Fig. 1). By following the smooth sections of
the manifolds from the periodic orbit to the primary in-
tersection, a region in phase space is isolated. The only
exit from this region is to get caught in one of the loops
(as viewed in the surface of section) formed by the mani-
fold crossings. The smaller the flux the slower the trans-
port or rate of escape. By way of canonical transforma-
tion to variables including energy and time, it can be
shown that the rate of flux exiting per unit time is pre-
cisely the action (area) of the loop; quite often there is
an additional integer factor depending on how many
loops exit from the region in one iteration of the map
[here 4, exiting region (6,7); see Fig. 1] depending on the
island chain. For (—0.35,7/4) there are eleven regions.
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FIG. 2. Different regions in phase space separated by partial
barriers; (a) g, =0 Poincaré section and (b) g»=0 Poincaré
section. See text for further explanation.

Symmetry considerations reduce this to seven of which
two had such large fluxes as to be essentially open, leav-
ing five regions to be used in modeling the quantum os-
cillator. The results are summarized in Fig. 2 and Table
I. (Note that only neighboring regions have connecting
fluxes.)

The classical information can now be translated into

TABLE I. Relative volume of the chaotic phase space of the

different regions as shown in Fig. 2 and their connecting fluxes.

The fluxes are calculated for E =1 and must be scaled as E /.
Regions 1 and 2, and 6 and 7 could be grouped together be-
cause their connecting fluxes are such that their barriers could
be ignored.

Relative volume

Region (%) Total flux

1+2 12
(1+2)—3 0.068

3 13
3—4 0.13

4 13
45 0.21

5 36
5-(6+7) 0.28

6+7 26
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information on the quantum Hamiltonian. Assuming a
basis exists such that each vector has its Wigner trans-
form localized (in a semiclassical sense) in one subregion
(note that only the existence of the basis is needed here,
not its actual construction), the mean-square value
Hﬁ}‘{,} of the Hamiltonian matrix elements connecting a
vector |a;i), associated to region i, to |B;j), associated
to region j, can be related to classical transport quanti-
ties. More precisely, if the chaotic subregions are large
compared to A, and connected through a Markovian-like
process (i.e., each point of some subregion i can be con-
sidered to have equal probability to pass into some subre-
gion j per unit time), it can be shown® that to leading or-
der in h, the dimensionless *“‘mixing parameter” A;; is
given at energy E by

1y D2 4”2(2”h)d—lﬁfl ’

where D is the total mean spacing, d is the number of de-
grees of freedom, f; is the relative phase-space volume of
region i, and ¢;;(E) is the flux (i.e., the energy-surface
volume per unit time) exchanged between regions i and
j.'9 This result is at the root of all our conclusions con-
cerning the quantum manifestations of limited classical
transport.

In studying statistical fluctuations, as we discuss in
what follows, our main tools are ensembles of random
matrices adapted to the problem at hand. In this respect
it is crucial to notice that the mixing parameter A,
namely, the mean-square matrix element in units of the
total mean spacing, is also the transition parameter
governing transitions in the fluctuation properties of en-
sembles of random matrices of various types [GOE
— GUE (unitary), Poisson— GOEL'' The A;; are also
the parameters governing the transition from several un-
coupled GOE (zero mixing) to a simple GOE (complete
mixing). The procedure is now fixed: From the classical
dynamics compute the parameters f; and ¢;;, which in
their turn determine the A;; that uniquely determine the
fluctuations. '2

Before comparing the above predictions to the spectral
statistics of the quantum oscillators, some comments
concerning the quantum calculation are in order. The
spectral statistics describe the fluctuations about the
mean density of states. To separate these two different
phenomena, the spectrum {E;} is mapped into a new
spectrum' {E/} via E/ =N(E,), where Now(E) is the
locally smoothed integrated density of states for the
chaotic levels. The regular levels removed represent a
constant proportion fz of the spectrum at all energies so
Na(E)=—fr)N(E), where N(E) is the locally
smoothed integrated density of states. For the quartic
oscillator, we use an expansion of N(E) up to the third
term in #, i.e., O(E ~%*). The proper symmetry decom-
position has been used. We have put some effort into ob-
taining very long, highly accurate level sequences to in-

()

sure accurate statistics. For the study given here, we
have 22000 levels converged to an average error
=10 ~°D (mean spacing). We have several distinct, in-
dependent methods to determine the accuracies, one of
which allows placing an error bound on each individual
level.

Going back now to the spectral statistics of the chaotic
levels, they will be of intermediate nature between that
of a single GOE and five uncoupled GOE weighted by
the relative volumes given in Table I. To measure quan-
titatively the fluctuations, we calculate the variance
22(r) of the number of levels in an interval of fixed
length r. The r dependence is important here because
therein lies the difference between independent super-
positions of spectra and weakly coupled ones. For weak
couplings at r KA, the statistics behave as though there
is just one GOE and in the other extreme r> A the
statistics are more like the ones of five uncoupled GOE.
This is confirmed in the example treated here. Indeed,
Fig. 3 shows quite good agreement between the quartic
oscillator and the theory presented here.

It is instructive now to reexamine the BGS conjecture'
concerning the statistics of sufficiently chaotic systems.
It is clear that even very chaotic systems could have par-
tial barriers in phase space such as is trivially realized by
placing two chaotic billiards side by side and poking a
hole to connect them. The hole is essentially closed
quantum mechanically when the natural wavelength is
too long. As the wavelength decreases it becomes more
and more apparent just as the classical flux would in-
crease [for the quartic oscillator, ¢;;(E) scales the same
as the actions, which is (E/Eq)¥*¢;;(Eo)]. It is there-
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FIG. 3. Number variance 2%(r): (a) one GOE; (b) five
GOE blocks weighted according to the fraction of total phase-
space volume (see Table I), the blocks are decoupled; (c) like
(b), but with blocks coupled by the A,, deduced from Table I
by use of Eq. (2); (d) from the quantum spectrum (from the
16000th to the 22000th state)—the regular levels (~12%)
have been subtracted; (e) from a Poissonian spectrum, for the
sake of comparison. See text for further explanation.
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fore very important to identify the time scales on which
the complete phase space is explored before one can
know if the system is sufficiently chaotic. For example,
even the standard stadium billiard may show some devia-
tions due to the bouncing-ball modes around which the
phase space is diffusive. These considerations are even
more likely to affect the Berry-Robnik surmise. Since
these partial barriers are not exceptional in mixed sys-
tems, the modeling of each chaotic region by one GOE
can be rather poor as is the case for the quartic oscilla-
tor; this accounts for the major deviations when looking
at the complete spectrum. It has also been suggested'?
that weak connections between the regular and chaotic
levels should change the statistics. In the quartic oscilla-
tor this was checked and seen for some special levels but
was not statistically detectable.

The same ensemble theory also predicts localization of
the eigenfunctions. Such nearly block-diagonal Hamil-
tonians would not completely mix upon diagonalization
the various subspaces associated with each block. In
fact, for A;; small, a perturbed eigenvector | E;i) from
space i has little projection in space j (j=1). Using an
ensemble-degenerate perturbation theory,'* we find on
average for weak coupling that the square of this projec-
tion is
1/2
CE;i | P Esi=2f;

1/2== [—g- fj¢,j(E)

2
Y 7 Qrh)i7Y,

(3)

(with f’,— the projector onto the jth subspace, and ()
means local smoothing in E) valid for A;; <1. Equation
(3) implies that the very-long-time phase-space explora-
tion of a wave packet initially located in region i is not
democratic over the entire chaotic region but remains
mostly localized in region i, in sharp contrast to the clas-
sical dynamics. Clearly, transport barriers, depending on
the flux, provide a very effective mechanism for “quan-
tum dynamical suppression of classical chaos.”

In conclusion, we have taken one more step closer to
understanding how the correspondence principle applies
for systems classically possessing KAM islands embed-
ded in a chaotic sea. We have identified the influence of
finite-time phase-space structures, such as partial bar-
riers characterized by the flux crossing them, in the
quantum spectrum. We have given a semiclassical
theory for finite & which recovers as limiting cases (i) for
chaotic systems, the BGS conjecture, and (ii) the Berry-
Robnik surmise for the level statistics of mixed systems.

For the wave functions, the partial barriers lead to locali-
zation. This should have important consequences for
atomic and molecular systems currently under study. '°
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