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The spectral density of the single-impurity Anderson model is calculated by a combination of quantum
Monte Carlo method to provide data on the Matsubara Green's function, the maximum-entropy method
of image reconstruction to invert numerically the spectral representation, and perturbation theory to pro-
vide informative default models. The Kondo central peak of the spectral density is shown to be a univer-

sal function of t0/Tr, and T/T& at low frequencies, where Tz is the Kondo temperature. The higher-

frequency side peaks are nonuniversal. With decreasing T/Tz the Kondo peak grows as the screened lo-

cal moment disappears.

PACS numbers: 75.20.Hr, 71.10.+x, 71.2S.+d

The single-impurity Anderson model' was invented

nearly thirty years ago to describe dilute magnetic im-

purities in metallic hosts. Its importance has grown with

current research on strongly correlated electronic sys-
tems including mixed valent, Kondo, and heavy-fermion

phenomena. In recent years considerable progress in un-

derstanding the model has been achieved using nonper-
turbative methods such as the Bethe ansatz, the renor-
malization group, and quantum Monte Carlo (QMC). "

Nevertheless, many properties of the model have

remained elusive such as the spectral density of the im-

purity state, which is essential for comparison with spec-
troscopic and transport measurements. The spectral
density has been calculated reliably by perturbative
methods only for large orbital degeneracy or for expan-
sion parameters below the range of most physical in-

terest. It cannot be obtained with the Bethe ansatz, has
been obtained only at zero temperature by the renor-

malization-group method, and is extremely difficult to
calculate reliably from QMC. '

In this Letter we report significant progress in obtain-

ing the spectral density of the nondegenerate symmetric
single-impurity Anderson model from QMC data. Our
approach' is to regard the analytic continuation of
Matsubara Green's-function data from imaginary time

to real time as an image reconstruction problem, and

to use the well-established maximum-entropy (ME)
method. '' The spectral density is obtained reliably over
the entire range of model parameters accessible by the
QMC method with data having much larger statistical
error than required by other proposed analytic continua-
tion methods. ' For ratios of Coulomb interaction to
hybridization width greater than z, we report that the
co =0 peak of the spectral density (Abrikosov-Suhl reso-
nance or Kondo peak) is a universal function of to/Ttt
and T/T~, where T~ is the Kondo temperature. We

compare our results to a commonly used perturbation
theory for the spectral density, which does not exhibit
universal Kondo behavior at least to second order.
Moreover, our successful procedure for calculating the
spectral density is a general method applicable to a wide

variety of quantum simulations.
The Anderson model consists of a half-filled conduc-

tion band interacting via a matrix element V with an im-

purity site. There is a Coulomb energy U for two elec-
trons on the same impurity. For the symmetric case the
impurity energy is equal to the Fermi energy. Taking
the bandwidth to infinity leaves only two relevant param-
eters: U and the hybridization width I =N(0)trV,
where N(0) is the conduction-band density of states at
the Fermi energy. We expect an impurity spectral densi-

ty A(co), with Lorentzian side peaks centered at
to=+ U/2 of width I, and a central Kondo peak at
to =0 of width on the order of Tg.

A(co) is to be obtained from the impurity Matsubara
Green's function G(r) calculated by QMC. G(r) is

periodic in 0 & r (p, where p= 1/T. To generate data
on G(r), we use the algorithm of Hirsch and Fye. "
This algorithm is particularly stable at low temperatures
when the electron-electron Coulomb interaction U is re-
stricted to a few sites. In such cases the simulations can
be performed without stabilization methods, and for the
symmetric Anderson model the "sign problem" that
plagues other fermion simulations is absent. We obtain
G;=G(r, ) for a discrete set of imaginary-time values r;
The spacing between the z„h, i, must be kept sufficiently
small (Ar I U~0. 19) to minimize systematic Trotter
breakup errors. We made no attempt to remove this er-
ror by extrapolation to h, r =0. The computational time
required for the calculation scales as (/s. r/p) . These
two potentially conflicting requirements limit the range
of U, I, and P which can be realistically calculated by
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S= dco A(co) —m(cu) —A(o)) ln
A (co)

J —~ m (ar)
(2)

whose form is a unique consequence of the axioms of log-
ical statistical inference. ' The quantity m(co) is termed
the default model, as it is the spectral density the
method would return in the absence of any data. Choos-
ing a good default model has benefits similar to a vari-
ance reduction technique. In practice, we used for an in-
formative m(co) the prediction of Horvatic, Sokcevic,
and Zlatic for A(c0) which involves a calculation of the
self-energy by self-consistent second-order perturbation
theory starting from a Hartree-Fock basis.

The generalization of the g measure to covariant data

QMC. The G; are coarse-grained averages of the QMC
data'" to remove correlations in Monte Carlo time. To
approach the conditions of Gaussian distributed data, we

had to use about 100 bins, each with about 1000 mea-
surements. This binning was accompanied by tests for
how Gaussian the data were. A detailed description of
these procedures will be given elsewhere. '

To use an image-reconstruction method to determine
A(co), it is also essential to estimate the statistical er-
rors ' on the G; embodied in the covariance matrix

C~ =(G;GJ) —(G;)(Gt). Although all prior approachess
to calculating spectral functions have assumed that the
G; are statistically independent (C is diagonal), we find

that the covariance matrix is dense. To a first approxi-
mation, all the elements of C are of comparable magni-
tude except where they are required to be small by the
symmetry of the model. The eigenvalues of C vary over
4 to 6 orders of magnitude.

To extract A(ro) from G(r) data, we must invert the
spectral representation

g oo TN

G(r) - dtDA(a))—oo 1+ Pco

This is similar to a Laplace transform. The numerical
inversion of such transforms is extremely ill posed when

the data are noisy and incomplete; that is, there exists an
infinite set of A(co) all of which fit the data within sta-
tistical errors, and small errors in the data can lead to
very large changes in A(co). ME' '' approaches such
inverse problems using probability theory. We infer the
most probable A(ar) (termed the image) and estimate its
reliability, based on both the QMC data and any prior
information we have about A(c0). The data are embod-
ied in a g measure for the quality of fit. The prior in-

formation about the positive and additive nature of
A(c0) is embodied in an entropy functional S. The im-

age is obtained by maximizing aS —g /2 as a function of
A(m). The scalar a is a statistical regularization param-
eter which is calculated from the data by statistical
inference arguments. '

The Shannon-Jaynes entropy functional is

g'=—g(G; —F;)C;, '(G, —F, ), (3)

where F; is the fit to G; which would be generated by a
given choice of A(iu) via Eq. (I). Since C is a sym-
metric positive-definite matrix, we can decompose it by
C=0 .D 0, where the diagonal matrix D has as its
elements the eigenvalues of C, and 0 is an orthonormal
matrix. Applying 0 to a discretized version of Eq. (I),
we transform the inversion problem to a new data space
in which the data are statistically independent and the
errors are given by the square roots of the elements of D.
This permits the use of existing robustly tested ME
image-reconstruction algorithms' which have been
designed for Gaussian-independent data.

For most of our measurements, the systematic errors
associated with the finite value of Ar were estimated to
be typically &0.5%, and the QMC statistical errors
were typically & 0.3%. The internal consistency of clas-
sic ME'6 enables the calculation of a statistical error re-
scaling, which can compensate for a failure of the data
to achieve a Gaussian distribution. For most of our runs
the errors were rescaled upward by less than 20%, mean-
ing that the covariance matrix and the data were con-
sistent with a Gaussian distribution. In cases where the
error rescaling was larger, there was significant kurtosis
in the distributions of the G;. The error rescaling could
usually be reduced to less than 20% by decreasing hr,
implying a greater consistency with a Gaussian distribu-
tion.

To describe our results for the symmetric Anderson
model, we find it convenient to reexpress the parameters
U and I in terms of the expansion parameter of the per-
turbation theory of Horvatic, Sokcevic, and Zlatic,
u =U/zi, and the Kondo temperature Trr. We take as
Ttr the Haldane ' high-temperature perturbation-theory
expression multiplied by a correction (I+ I/2u) found
numerically i.e.,

Ttr =(I+ I/2u)0. 515I tu exp( —n u/8) .

We scale energies by I and plot the image as rrI A (co).
Figure I shows typical results. The A(c0) obtained

from the QMC data using ME is labeled QMC-ME.
The prediction of Horvatic, Sokcevic, and Zlatic for
A(ro) is labeled H. The ratio of the two results is la-
beled QMC-ME/H. While the H prediction has the
qualitatively correct structure, the QMC-ME Kondo
peak is depressed and broadened compared to H and the
U/2 peaks are slightly enhanced which preserves the
zeroth-moment sum rule on A(ro). In general, we find

that QMC-ME and H agree for u &1.2, but with in-

creasing u the QMC-ME Kondo peak becomes increas-
ingly depressed and broadened compared to H, and the
QMC-ME U/2 peaks become increasingly enhanced
compared to H. We were able to calculate up to u =3.5
before running into Trotter breakup limitations. In prin-
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FIG. 1. QMC-ME labels the quantum Monte Carlo and
maximum-entropy results for the spectral density of the sym-
metric Anderson model for the parameters indicated. H is the
prediction of the self-consistent second-order perturbation
theory of Horvatic, Sokcevic, and Zlatic for the self-energy.
QMC-ME/H labels the ratio of the two calculations.

ciple, the perturbation expansion of Horvatic, Sokcevic,
and Zlatic in u is absolutely convergent, and higher-
order terms may be calculated which would improve the
agreement with the QMC data at higher u. In practice,
this has not yet been carried out. Nevertheless, second-
order perturbation theory for the self-energy has provid-
ed a very good default model for the ME method. Im-
ages obtained with a flat (or ignorant) default model
have much larger errors. Our spectral densities are ob-
tained from data having more than 10 times the statisti-
cal error required by direct methods for analytic con-
tinuation, such as simple Pade approaches. ' The
difference is that ME fits the data only within statistical
error, whereas the direct methods fit the data exactly
and, therefore, propagate statistical noise into the spec-
tral density.

There is only a single low-energy scale in the problem,
T~. Therefore we expect that at low frequencies the
Kondo peak should scale with Tg and be independent of
u. Figure 2 shows our most striking results. Here the
QMC-ME images xI A(ro) are plotted against ro/Tg at
fixed T/Tir 1.5 and for a variety of u. The semiloga-
rithmic scale emphasizes the behavior at low frequencies.
One can see that the QMC-ME spectral density is ap-
proximately universal (independent of u) for ro/T& +20,
although the high-frequency behavior around the U/2
peak is nonuniversal. While ME does not provide error
estimates at individual ro/T~ points, it does provide error
estimates on integrals of A(co). The inset in Fig. 2
shows that the average of ~I A(co) for ro/TN ~20 is

universal for u & 1.25 within statistical error. We have
repeated such calculations at a variety of T/Tz and for
a variety of integrated quantities to verify the universal
behavior. In contrast, the H predictions are distinctly

FIG. 2. Study of Kondo scaling of the spectral density at
fixed T/TI; 1.5 and for the values of u =U/IrI indicated.
QMC-ME labels the quantum Monte Carlo and maximum-
entropy results. They are universal functions of co/T& (in-
dependent of u) for ro/T& less than 20, and they are nonuniver-
sal for larger ro/TI, in the vicinity of the ro-U/2 peaks. Inset:
Average of IrI A(ro) for co/Tq &20 plotted vs u. H labels the
predictions of the theory of Horvatic, Sokcevic, and Zlatic for
the same values of II, with, higher values of IrI A(0) corre-
sponding to larger u. The H theory is distinctly nonuniversal.

nonuniversal in the same frequency range. Only for
u $1.25 where both H and QMC-ME agree within sta-
tistical errors is QMC-ME nonuniversal. It is remark-
able that the H prediction appears to be tangent to the
universal behavior at u =1.2. At larger u the Lo-
rentzian-broadened ro +'U/2 peaks are distinct from
the Kondo peak, whereas at smaller u the two peaks are
merged.

Figure 3 shows the evolution of the universal Kondo
peak as a function of T/Tg at fixed u =2.0. At
T/Tx&10 the Kondo peak is absent. With decreasing
T/Tir the Kondo peak grows and narrows until at
T/Tir &0.2 the height of the central peak has almost ap-
proached the Freidel sum-rule value of 1.0. The inset in

Fig. 3 shows the screened local moment calculated by
QMC, Tg(T)/g, plotted versus T/Tir for u =2.0. The
growth of the Kondo peak with decreasing T/Tx is
correlated with the screening of the impurity local mo-
ment by the conduction electrons. Plotted as the dashed
line labeled DS in this figure is the Doniach-Sunjic
prediction for the shape of the Kondo peak at zero tem-
perature. This is given by

&r+ Ds(co) =ReJi r, /(ro+ Ir, ) .

We find that a best fit to the T/Tg =0.2 QMC-ME
curve is obtained with I ~ =2.5T~, which is remarkably
the Wilson ratio ' for the Kondo problem. Wilson found
that Tg=2 4T~, where TP~. (0).=p~ and again Tg is
the high-temperature perturbation prediction. The
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FIG. 3. QMC-ME labels the quantum Monte Carlo and

maximum-entropy results for fixed u 2.0 and varying T/T»
as indicated. The Kondo peak is approximately independent of
u for ca/T» less than 20. DS labels the Doniach-Sunjic expres-
sion for the shape of the Kondo peak at zero temperature. The
width in the DS formula is I"g 2.5'. Inset: Screened local
moment, Tg(T)/g', plotted vs T/T».

Doniach-Sunjic formula also agrees with zero-
temperature numerical renormalization-group calcula-
tions.

In conclusion, we have obtained dynamical informa-
tion for a strongly correlated electronic system by a nov-

el combination of a quantum Monte Carlo method, the
maximum-entropy method for image reconstruction, and

perturbation theory. We have established that the spec-
tral densities of the symmetric Anderson model are
universal functions of ca/T» and T/T» at low frequen-
cies. A fit of the Doniach-Sunjic formula to our lowest-

temperature results yields the Wilson ratio. The univer-

sal behavior of the spectral density at low ca/T» leads to
universal transport coefficients which will be reported in

a subsequent paper.
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