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Fluctuation-Induced Transitions between Periodic Attractors: Observation of Supernarrow
Spectral Peaks near a Kinetic Phase Transition
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Fluctuation-induced transitions between coexisting periodic attractors have been investigated with an

analog electronic circuit model. Calculations and measurements of the spectral densities of fluctuations
have revealed superimposed twin-peaked partial spectra and a supernarrow spectral peak whose intensity
depends critically on the distance from the phase transitions where the populations of the attractors
equalize.

PACS numbers: 64.60.—i, 05.40.+j, 05.70.Ce, 05.70.Jk

Nonlinear systems that possess two or more stable
dynamical states (periodic attractors) in an external
periodic force have been the subject of intensive investi-
gation during the last decade. Such studies have includ-
ed, for example, work on a variety of bistable and mul-

tistable optical systems and, of particular interest, a rel-
ativistic electron confined to a cavity in a magnetic field
and excited by cyclotron resonant radiation. The fluc-
tuations (noise) that are unbiquitous to real physical sys-
tems give rise to transitions between coexisting attrac-
tors. In the case of weak noise, the resulting stationary
populations of the stable states usually differ drastically
and only for certain values of the parameters of a bi-
stable system are they of the same order of magnitude.
Such behavior is strikingly similar to that of thermal
equilibrium systems with coexisting phases (e.g. , liquid
and vapor) which exist with an overwhelming probability
in either one or the other of two phases; only very close
to the phase transition itself do the populations of the
phases (e.g., molar volumes) become of the same order
of magnitude. By analogy, therefore, the parameter
range where the attractors of the bistable system are ap-
proximately equally populated may be referred to as the
range of a kinetic phase transition, and one may expect
some specific fluctuation phenomena to arise there.

In this Letter we report the principal results of an in-

vestigation of fluctuational transitions and of a kinetic
phase transition in a bistable periodically driven system
for which the attractors are stable periodic states of
forced vibration, with differing amplitudes and phases.
We have studied escape rates, and, to reveal features of
fluctuations in the transition range, we have investigated
their spectral densities. The onset of a multipeak struc-
ture, including a spectral peak very much narrower than
the reciprocal relaxation time of the system, has been ob-
served. The specific model studied, a nearly resonantly
driven nonlinear oscillator (single-well Duffing oscilla-
tor), is an archetypal example of systems that display bi-
stability in a periodic field. This model describes, in par-
ticular, the relativistic electron referred to above; it is
also widely used for the analysis of nonlinear optical sys-

tems. ' For stronger periodic driving amplitudes than
those considered here, it displays" dynamical chaos.

For the widely applicable case where the noise acting
on a system is Gaussian and weak, with dimensionless in-

tensity a((1, the raito of the populations w~ and w2 of
the attractors 1 and 2 is exponential:

w ~/w2 =const x exp[(R (
—Rp)/a), w

~
+ w2 1 . (1)

Here, R ~ and R2 are the characteristic "activation en-
ergies" for the probabilities W~2 and W2~ of the transi-
tions 1 2 and 2 1; they depend on parameters of the
system and on the shape of the power spectrum of the
noise, in the general case of colored noise, but are in-

dependent of a. In practice, at small a, for almost all
values of parameters of the system, ~

R ~

—R2 ~
))a:

thus, one of the attractors is occupied and the other is

empty.
However, there will be a relation between the parame-

ters such that
~
R~ —R2 ~

~ a, in which case the popula-
tions of the attractors will become comparable. The con-
dition R~ R2 defines the point at which a kinetic phase
transition occurs in a periodically driven dynamical sys-
tem subject to weak noise: On opposite sides of this
point the system, with a probability =1, occupies
different states. The width of the phase transition range
is -a. Within this range one expects not only that small
fluctuations will occur about the stable states, but also
that comparatively large fluctuations related to transi-
tions between the stable states will become prominent.
The characteristic time scale for these fluctuations and
for the relaxation of the population difference wi —w2 is

given by the reciprocal transition probabilities
8 )2' —8'2['. A direct and convenient way of investi-

gating the fluctuations is through a determination of
their spectral density. It is to be expected that the slow

[W;, CL exp( —R;/a) being exponentially small compared
to all other relaxation rates] relaxation of w~, w2 should

give rise to peaks in the spectral density of fluctuations
with a characteristic width —8';~, i.e., to exponentially
narrow spectral peaks. It is a characteristic feature of
systems with coexisting periodic attractors that such "su-
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pernarrow" peaks will arise at the frequency of the
driving force and its overtones, and at zero frequency; we

may note their close correspondence to the zero-
frequency spectral peaks for Brownian particles fluctuat-
ing in static double-well potentials ' '' and for general-
ized multistability' in periodically driven systems.

The equation of motion of the nonlinear oscillator in-

vestigated in the present paper is

q+ 2I q + cupq + yq
=h cos(cps t ) +f(t ) . (2)

The force f(t) is assumed to be a white Gaussian noise
with correlator

(f(t)f(t')) -2I Bb(t t') . — (3)
In the underdamped case, I ((cup, and for nearly reso-
nant (but not too strong) periodic forcing, I cps cppl

&&mi„ it is convenient in analyzing the motion to trans-
form to the rotating frame. It can then be shown ' that
the dynamics of the system is determined by two dimen-
sionless parameters, 0 and P, which characterize, re-
spectively, the frequency detuning and the strength of
the periodic field,

COII COP0= r 32~81~s —~p I'
(4)

f OO

Q(cp) = Re —dt exp(icpt)Q(t),

The dimensionless noise intensity a is given by

~=3 I) Ia/16~Jr (s)
The range of P and 0 within which the oscillator is bi-
stable is enclosed by solid lines of Fig. 1. The transition
probabilities between the attractors were considered in

Ref. 6; explicit expressions were obtained for the "activa-
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tion energies" R~ 2(p, 0) for both 0 ' 0 and near the
spinode point K (P= —,", , 0 =%3). These results may be
used to interpolate the phase-transition line Pp(A),
defined by R~(P, Q) =Rz(P, Q), between the arrow and
dashed curve in Fig. l.

The spectral density fluctuations of the coordinate of
the oscillator is determined by

(6)

0 0.2
I/n'

FIG. 1. Phase diagram showing the region of bistability of
the system (2) in terms of the reduced parameters (4); the ex-
perimental data (squares) are compared with theory (solid
curves). The theoretical phase transition interpolates from the
dashed curve to the arrowed point; the measured points at
which the transition rates between attractors are equal are
shown by crosses.

+T
Q(t) = lim dr[q(t+ r) —(q(t + r))] [q(r) —(q(r))]

7 eIcs 2 T U 7

[note that (q(t)) oscillates periodically in time]. In the case of weak noise intensity, the function Q(cp) can be broken
into two "partial" contributions Q;(cp) formed by small fluctuations about the attractors i =1,2 (cf. Ref. 14) and, in ad-
dition, the term Q„(cp) due to fluctuational transitions between the attractors, so that

Q(cu) =g w;Q;(cp)+ Q„(cp) . (7)

The expression for Q;(co) may be obtained easily by linearizing the oscillator s equation of motion near the stable state

ra (~ —~ )'+2(~ —~, )rt2(2I u, I' —I)+r'(v;+2~
4R'COg [(cpco)2 1 2v2]2+412(cpcp)2 (8)

v; = I+ 0 (3 I u, I

—4
I u, I +1) .

Here, I u; I is the square dimensionless amplitude of forced oscillations in attractor i: For the states with lower (i =1)
and higher (i =2) amplitudes, it is given, respectively, by the smallest and largest roots of the equation

y(l u; I') =0, y(x) =x(x —1)'+n 'x —P

[where (8) and (9) are written for the case y& 0, 0 & 0; bistability arises only for yQ & 0]. The expression for Q„(co)
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may be shown to be of the form

too) Wiq+ W~
Q(, (tu) = Q ) Qp w)wp

(II'I~+ IV~I) +( —I, )'
where

(10)

u, =&p(lu, l' —I+I& ') '.
It is evident from (10) that Q„(tu) has a Lorentzian

peak centered at the frequency of the external field nIh.

The width of the peak is exponentially small. The inten-
sity of the peak is an extremely rapid function of the dis-
tance from the phase-transition point. On a scale coarse
grained over the range -a(&1, the coe%cient w~wq in

(10) is exponentially sharp,

ln(wIwz) = —
I R,' —Rl I I p —po(n) I/a,

where R I p
—= (t)R I,&/8p)II-tI, (n&. Thus, the intensity de-

pends on the distance P —Po(A) to the phase-transition
point nonanalytically; its first derivative has a cusp,
which is a characteristic feature of first-order phase tran-
sitions.

The theoretical predictions, including the appearance
of the supernarrow peak (10), have been tested with the
aid of an electronic analog model of (2). The circuit, of
conventionalI design and accuracy, was driven by a
sinusoidal periodic force from an HP3325B frequency
synthesizer and optionally, in addition, pseudowhite
Gaussian noise from a feedback shift-register noise gen-
erator. ' The fluctuating voltage in the circuit represent-
ing q(t) in (2) was digitized, and the power spectral den-

sity Q(tu) of the fluctuations q(t) —(q(t)) was computed
and averaged by means of a Nicolet 1080 data processor.
Fuller details of the circuit model and data anlaysis will

be given elsewhere.
The bistability of the oscillator in the absence of noise

was observed. Its measured boundaries (square data
points in Fig. 1) were found to be well described (solid
curves) by the theory of Ref. 6. When weak noise was
added, transitions occurred between the attractors. The
dependence of the reciprocal average lifetimes (T;)
=

W~, of the attractors on noise intensity was found to be
of the activation type, and the dependence of the ex-
ponents on parameters was investigated. The values of P
and D for which (TI) =(Tz) are shown by the crosses in

Fig. 1.
Some typical spectra showing the measured evolution

of Q(tu) with decreasing P are plotted (histograms) in

Fig. 2 and compared with the theoretical predictions
(solid curves). The agreement between experiment and

theory is excellent; there are no adjustable parameters.
The most striking feature of the measured spectra in

Fig. 2 is the supernarrow peak that rises in the range
where P=Po(Q). Its width (unresolvable by the data-
analysis system) is very much smaller than either the
widths of the other peaks, or the experimentally deter-
mined damping constant I, or the frequency detuning
rut,

—too. The dependence of the intensity of this peak on
the distance from the phase-transition line is found to be
exponential, as shown in Fig. 3; note the logarithmic or-
dinate scale. This cusplike dependence is well described
by the analytic function (11) [the value of the coefficient
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FIG. 2. Spectral densities of fluctuations measured (histograms) for the electronic circuit model of (2) with 0 =4.574,
a 8.69x l0 ' for (a) p 0.048, (b) p=0.078, and (c) p=0. 150. The solid lines represent theoretical predictions.
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FIG. 3. Variation of the intensity I of the supernarrow peak
with distance from the phase-transition line for 0=4.574,
a=8.69&10 '. The squares are direct measurements; the
crosses are derived from (10), based on measured transition
rates; the solid line also represents (10), but for In(w~to2) given

by (11) with measured R[,2.

~
& t

—R2
~ p-p, «) having been calculated from the ex-

perimental data for R
~ 2(p, Q)l.

The rest of the spectrum Q(to) in Fig. 2 is also of con-
siderable interest. Depending on the values of p and
II ', it was observed to contain between one and four
peaks. This structure arises because, in the region of the
kinetic phase transition, the two partial spectra are su-

perimposed and each of them can be, in general, twin
peaked. The latter structure can be viewed as the result
of the modulation of forced vibrations at frequency cot, in

a given state by the relatively slow (with characteristic
frequency -tot, —coo) fluctuational vibrations about this
state.

We note, in conclusion, that the supernarrow peak in

the spectral density of fluctuations of periodically driven
systems found in the present work, and the correspond-
ing peak in the susceptibility predicted in Ref. 6, may be
used not only for determination of the phase-transition
point and for revealing features of the transition (as
here), but also for tunable and extremely narrow-band
filtering and detection of optical signals. In common
with the zero-frequency peak studied previously, " the
supernarrow peak observed here provides, in principle, a
basis for signal-to-noise enhancement of weak periodic
signals. Such stochastic resonance ' would occur, ' not
only at low frequencies, but close to the tunable frequen-
cy of the driving field.
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