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Broken Symmetry and Domain Structure in Ising-like Systems
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In Ising-like systems, there is a temperature T, strictly between zero and the usual critical tempera-
ture, above which any region of arbitrary size is completely contained within a domain which prefers en-

ergetically to be flipped.
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denote by a the spin configuration which is the negative
of cr in V and the same as a outside of V. Given a Ham-
iltonian P, we say that a domain V has positive energy if
P(a ) —P(a') & 0 [and non-negative energy if
P (a")—'jt(a) ~ 0]. For the standard nearest-neighbor
Ising ferromagnet with

Consider a d-dimensional lattice spin system with a
discrete symmetry group, such as the standard d-
dimensional Ising ferromagnet. Suppose that at temper-
ature T any region, at any location and of arbitrary size,
is contained within some larger domain such that a fixed
rotation of all spins within this domain relative to those
outside would lower the energy. It has been argued that
such a situation is inconsistent with spontaneously bro-
ken symmetry. ' This conclusion appears self-evident
since such domains would seemingly decouple the bulk
from boundary conditions at infinity.

Nevertheless, this conclusion is wrong for nearest-
neighbor Ising models (and Potts models with second-
order phase transitions) in any dimension. In this Letter,
we confine ourselves to providing a proof for the simplest
case, that of the two-dimensional Ising ferromagnet. A
future paper will cover higher dimensions and Potts
models. We will also show here that the converse con-
clusion is correct for Ising ferromagnets in any dimen-
sion; i.e., the absence of such large-scale domains at tem-
perature T implies the existence of broken symmetry.

Our results can alternatively be viewed by considering
the probability of finding, in a typical configuration of
the broken-symmetric phase, a surface surrounding a
large cube of volume L such that a rigid flip of the en-

closed spins will lower the energy. At sufficiently low

temperature it is clear, and easy to show using a Peierls-
type argument, that the probability of finding such a
domain is bounded from above by exp[ —c(T)L
where c(T) )0. In the paramagnetic phase it seems ob-
vious that this probability should equal 1 independently
of L, i.e., that c(T) =0, T ) T, (we, in fact, prove this
assertion later). It then seems natural to suppose that
c(T) 0+ only when T T, . We find, however, that
c(T) =0 above a new temperature T* strictly between 0
and T,.

To state our results precisely, we introduce some
definitions. By a domain, we mean a finite connected
subset V of Z with no holes; i.e., every pair of sites in V
can be connected by a nearest-neighbor path in V, and
every pair of sites not in V can be connected by a
nearest-neighbor path not in V. Given an Ising spin
configuration a = (a„:x C Z ) and a domain V, we
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(x,y)

this is equivalent to the surface of V (denoted
8V=—[(x,y) with x in V and y not in V]) having more
unsatisfied bonds than satisfied ones: Nt" )Nf, where
Nt" is the number of (x,y) in 8V with a„Cay and Nf is
the number of (x,y) in 8V with a„=ay. That is, it is en-

ergetically advantageous for the system to "flip" a
positive-energy domain.

As stated earlier, it is not difficult to prove that at very
low temperatures, typical spin configurations have few

positive-energy domains, while at high temperature they
have many. Here "many" means that for each length
scale L, there exists a positive-energy domain AL con-
taining the box BL =—[ —L,L); "typical" refers to a set
of spin configurations having probability 1 in an ap-
propriate infinite-volume Gibbs distribution.

Of greater interest is the relation at intermediate tem-
peratures between the sparseness of positive-energy
domains and the nonvanishing of the spontaneous mag-
netization M(T).

Theorem A .—In the standard 2D Ising ferromagnet,
there is a T* strictly less than the critical temperature
T, such that, for all T satisfying T* & T & T„ typical
spin configurations in the positively magnetized, pure
phase at temperature T have many positive-energy
domains.

Given this result, one might suppose that the entropy
of the surfaces surrounding positive-energy domains is
vanishingly small, so that their free energy is negligible.
Surprisingly, this is not the case: Arguments given
below show that usually the surface containing an arbi-
trary L x L square is mostly within a distance —1 from
the square, and the number of such surfaces contained
between the LXL square and a surrounding 2Lx2L
square gro~s exponentially with L. Furthermore, one
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can estimate the maximum distance of the domain sur-
face from the square: There is a positive fraction of the
L's for which AL can be chosen within BL with L' —L
=O(lnL) as L ~. For these L's, the total magnetiza-
tion in AL (before flipping the spins) is essentially
M[(2L) 1+o(L ) so that the flipped configuration has a
negative magnetization per site in AL, but still a lower
energy.

Theorem A shows that the presence of many positive-
energy domains does not guarantee the absence of sym-
metry breaking. On the other hand, the next theorem
shows, at least for Ising ferromagnets, that the absence
of large-scale, positive-energy domains does imply the
presence of symmetry breaking; a natural extension of
our arguments can be applied to Potts ferromagnets to
obtain an analogous result.

Theorem B.—In the standard d-dimensional Ising fer-
romagnet, if M(T) =0, then typical spin configurations
(in the unique phase) at temperature T have many non-

negative energy domains.
Theorem A is based on an analysis of parallel spin

clusters which relies on the result of Coniglio et al. that,
in two dimensions, infinite plus and minus clusters can-
not coexist. Thus, for T & T„ the plus phase contains
an infinite plus cluster but no infinite minus cluster,
while for T) T, there exist no infinite clusters of either
sign. The physical idea behind the proof is as follows.
Consider an L iiL square in the plus phase. For L large
enough, the square will intersect the infinite plus cluster
with probability close to 1. To obtain a positive-energy
domain, construct its surface as a closed loop which con-
tains the intersection of the boundary of the square with

the infinite cluster, and continues outside the square only
along boundaries between plus and minus clusters (see
Fig. 1). The distance one needs to go out to obtain such
a loop is determined by the size of the finite clusters
overlapping the boundary of the original square. Such a
closed loop is guaranteed to exist for T & T, because
there are no infinite minus clusters. The fact that the
finite clusters overlapping an L &&L square are all of order
lnL or smaller justifies the remark following Theorem A.
The only negative contribution to the surface energy is

bounded from above by the intersection of the square
boundary with the infinite cluster, but this becomes a
negligible fraction of the total boundary as T T, be-
cause the infinite cluster density vanishes at T, (in fact,
having this fraction of the perimeter less than 2 is

sufficient). The technical proof now follows.
From here on we will work in the T & T, plus phase.

Let us denote by aL the sites in BL which have a nearest
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FIG. l. A sketch of the construction used in Theorem A.
The boundary GAL encloses the positive-energy domain which

contains the L x L square BL.

neighbor outside BL and decompose it into three parts:

a, = [x & ag.' the cluster of x is infinitej,

aL
—= [x 6 aL. o, = ~ 1 and the cluster of x is finite .

We have therefore separated sites on the boundary into
those belonging to the infinite plus cluster and those be-

longing to finite plus or minus clusters (which may be as
small as a single spin). For x in aL—,we define C„as the
(plus or minus) cluster to which x belongs. Each such

C, is finite.
Our candidate for the positive-energy domain AL is

AL, the union of BL with all of these C„'s (and all result-
ing holes); see Fig. l. Each (x,y) in aAL either has x
from one of the C„'s, in which case o„&o~, or else has x
from aL. Since the length

~ aL ~
of aL is no larger than

that of aAL, we see that [up to terms of O(l ) coming
from cornersl

(2)

Thus A, can be t.ken as A, pro. iding (a, )
& —,

'
) a, i.

We show below that this inequality will be satisfied for a
positive fraction of L 's; when not satisfied for a given L,
choose AL as the smallest AI with I )L for which

I ai I

Now, by ergodicity, we can relate f al. f/f al. f to the
spin percolation density R(T) Consider a big sq. uare of
size L' as the union of boundaries of squares of smaller
size. Then as L'

(2L'+1) g ~ al ~

= fraction of sites of BL. in the infinite cluster
L 0

R(T) =Pr(the origin belongs to the infinite cluster) . (3)

This implies that
~ ar ~

& —,
~
ai. ~

will be satisfied for (at least) a positive fraction of L s if R(T) & —, . To complete the
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proof, we need only show that R(T) 0 as T T, .
This follows from the fact that there is no percolation at
T„so that R(T, ) =0, and that by the inequalities of
Fortuin, Kesteleyn, and Ginibre R(T) is a decreasing
limit of finite-volume approximations.

To show that Al is contained in BI with I —L
=O(lnL), justifying the remark following Theorem A,
we need to show that the maximum diameter of the C, 's

is O(lnL). To show this, it suffices by standard proba-
bilistic arguments to have

Pr(diam of C„~c~inL) 0 as L' ~, (4)
L&L'«~

for some c~(T) & ~ (here we define C„ to be empty if
x E BL). This will be the case if

Pr(diam of C„~k) =O(e " ),
since at fixed T we can always choose c~ such that
c~c2 & 2. To obtain this latter estimate we note that for
x in 8L the minus spins in the clusters adjoining C„are
«-connected (i.e., by paths which can go to diagonal
neighbors); thus it suffices to show that

Pr(origin belongs to or is enclosed by

a minus *-cluster of diam ~ k) =O(e " ) .

This in turn easily follows from the fact that the two-

point connectivity function for minus ~-clusters has a
finite correlation length for T & T,.

Theorem A indicates the presence of a new tempera-
ture T* which signals a geometric transition in the pre-
valence of positive-energy surfaces. Although there is no
singularity in the free energy associated with this transi-
tion, it may turn out to have other interesting manifesta-
tions.

Theorem B is based on an analysis of clusters in the
related Fortuin-Kasteleyn (FK) random-cluster mod-

el. ' When M=0 in the ferromagnet, all FK clusters
are finite. Given an FK configuration, corresponding
spin configurations are generated by tossing independent
fair coins, one for each FK cluster, and assigning all

spins in the cluster the value +1 for heads and —
1 for

tails. Now suppose that, prior to tossing coins but after
choosing an FK configuration, we generate a sequence of
candidates for AL as follows. AL t is the union of all FK
clusters of the sites in Bl (and all resulting holes).
Al (( + / adds to Aq k all adjoining FK clusters (and all re-

sulting holes). Suppose we toss coins first for clusters in

Az ~, then in AL 2
—AL ~, etc. By a simple symmetry ar-

gument, prior to tossing coins for AL I, +~
—AL I„every

outcome of the coin tosses can be paired with that in

which the spins in AL q+~ —AL k come out exactly the
opposite. If one outcome gives a non-positive energy for
AL k then the other one gives a non-negative energy.
Thus, there is always a conditional probability ~

2 that
AL k will have non-negative energy. The probability that
Ai k will have non-negative energy for some k ~ k' is
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evidently ~ 1
—2 " and thus, with probability 1, even-

tually some AL I, will have non-negative energy.
A weaker version of Theorem B can be extended to

any Ising model with arbitrary couplings, including spin
glasses. There always exists a temperature T'~ T, such
that, for all T & T', typical spin configurations in the
(unique) phase at that T have many non-negative-energy
domains. This temperature corresponds to the percola-
tion transition of an associated FK model. ''

We have therefore shown that absence of FK percola-
tion implies, for a general Ising model in d dimensions,
that a box on any length scale L is contained within a
domain whose inversion is either energetically favorable
or at least neutral. Since this temperature region is al-

ways within the paramagnetic phase, our result is expect-
ed. Surprisingly, however, the converse fails. For a
two-dimensional system with discrete spin symmetry, we
have shown that a temperature region exists within the
broken sym-metry phase such that a region of any size is

completely contained within a domain which can be
flipped such that the energy is lowered. Moreover, the
magnetization within the flipped domain will generally
have a sign inconsistent with the majority phase, as
determined by the boundary conditions.
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