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Origin of Atomic Resolution on Metal Surfaces in Scanning Tunneling Microscopy
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Scanning tunneling microscopy has repeatedly resolved individual atoms on a number of metal sur-
faces with atomic distances 2.5-3 A. This is in sharp contradiction to the resolution limits previously
predicted, 6-9 A. We present a theory of such atomic resolution in terms of actual tip states, for exam-

ple, d, 2 tip states on tungsten tips. Quantitative interpretation of the observed images is obtained with

no adjustable parameters. We predict that to achieve atomic resolution, the tip material should be either
a d-band metal or certain semiconductor.

PACS numbers: 61.16.Di, 61.50.Em

Scanning tunneling microscopy (STM) has repeatedly
resolved individual atoms at low Miller index metal sur-
faces, ' such as Au(111), Al(111), and Cu(100), with

nearest-neighbor atomic distances 2.5-3 A, as shown in

Table I. This is in sharp contradiction to the STM reso-
lution limits previously predicted. According to the s-
wave tip model, on metals, only superstructures of recon-
structed surfaces with periodicity greater than 6 A can
be resolved. In Lang's numerical simulation of STM
images, both tip and sample are modeled as a structure-
less jellium surface with an extra metal atom adsorbed.
The simulated image of that metal atom appeared as a
pancakelike protrusion of diameter =9 A and max-
imum height =1.6 A. In other words, both models con-
cluded with no atomic resolution on close-packed metal
surfaces. Facing this controversy, some authors pro-
pose models of STM imaging based on mechanical in
teractions between tip and sample. ' However, none of
these mechanical models provide a consistent explana-
tion of all experimental facts.

The s-wave tip model fails in explaining. the observed
atom-resolved images because it models the tip as a

macroscopic continuum, i.e., a potential well with local
radius of curvature R. With R =9 A and a tip-sample
distance 15 A, at low bias, Tersoff' and Hamann show

that the center of curvature of the tip follows the contour
of the Fermi-level local density of states (LDOS) of the
sample. "In any case," they emphasized, "the s-wave
treatment here is not intended as an accurate description

TABLE I. Atom-resolved images of metal surfaces by scan-

ning tunneling microscopy.
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of a real tip, but rather as a useful way of parametrizing
the effect of finite tip size." Clearly, to account for the
observed atom-resolved images, the actual electronic
states of a real tip should be considered.

In this Letter, we present a theory of STM imaging
mechanism in terms of actual electronic states on real

tips, exemplified by a quantitative explanation of the ob-

served images of close-packed metal surfaces. All com-
monly used tip materials, W, Pt, and Ir, are d-band met-
als. In the reported experiments, ' tungsten tips are
used. At the Fermi level, 85% of its density of states
comes from d states. Tungsten has a strong tendency to
form highly localized metallic d, 2 dangling bonds on its
surfaces, which is well established both experimentally
and theoretically. ' Cluster calculations'' confirmed this
conclusion: On the apex atom of either W4 or W5, there
is a localized d, ~ state near the Fermi level. " Thus, it is

reasonable to expect such localized metallic 1,2 states to
exist on tungsten tips.

Figure 1 shows a qualitative explanation of the effect
of a d, z tip state in the light of the reciprocity principle
in STM: Upon interchanging the tip state and the sam-

ple state, the image should be identical. ' For an s-wave

tip state, the STM image of a metal surface is the
charge-density contour, which can be evaluated using

Atomic
spacing

Surface (A) Method
Corrugation

(current variation) Reference

Au(l l I ) 2.87 Current
Au(111) 2.87 Topographic
Al(111) 2.88 Topographic
Cu(100) 2.55 Topographic

(10%)
o. ts A
0.1-0.8 A
O. 2 A

SAMPLE, s SAMPLE, dzz

FIG. 1. An intuitive picture of the STM imaging mecha-
nism in terms of a d 2 tip state, in the light of the reciprocity
principle (Ref. 12).
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atomic-charge superposition, i.e., as a sum of the charge
densities of individual atoms, each made of s states.
According to the reciprocity principle (Fig. 1), with a d, 2

tip state, the tip no longer traces the charge-density con-
tour of the sample. Instead, it traces the charge-density
contour of a fictitious surface with a d, ~ state on each
atom. Obviously, these contours exhibit much stronger
atomic corrugation than that of the charge density. The
possible role of such a localized d, 2 dangling-bond state
at the tip was also discussed by Baratoff. '

In the following, we present a quantitative analysis of
the images of close-packed metal surfaces using the
three-dimensional tunneling theory outlined in Ref. 12.

Figure 2 shows the geometry of close-packed metal
surface and its surface Brillouin zone. ' The charge den-

sity should have the same symmetry as the surface struc-
ture. Neglecting the underlying layers, the charge densi-

ty should have a hexagonal symmetry, i.e., invariant with

respect to plane group p6mm (see Fig. 2). Up to the
lowest nontrivial Fourier components, the most general
form of surface charge density with a hexagonal symme-

try is

2

4("'(x)= —,
' + —,

' g cos(m, 'x),
j~0

(2)

where mp=(0, 1), m( =(—
—,
' J3, ——, ), and mz=(-,' J3,

——,
' ), respectively. It is easy to show that the function

(kx) has maximum value 1 at each atomic site, and

minimum value 0 at the center of each atomic triangle.
To account for the lowest nontrivial Fourier com-

ponents of surface charge density, it is sufficient to con-
sider the Bloch functions in the vicinity of several high-

symmetry points on the surface Brillouin zone. " The
ap(z) term in Eq. (1) comes mainly from the Bloch
functions near I, whose lowest Fourier component is'

y;-exp(- xz),

where the decay constant (r is determined by the work
function t(( through the relation K = (2m, p) '~ /ft
=0.514&, in A and eV. This group of Bloch functions
contributes to the first term in Eq. (1):

ap(z) ~ exp( —2xz) .

The contribution to the second term of Eq. (1) comes
from Bloch functions near the K points. ' In general, a
surface Bloch function at that point has the form

yK =exp(ik( x) gaGexp[ —(K'+
~
k(+G ~') '"z j

G

x exp(iG. x), (5)

E ~ EF

where x = (x,y) and k =4(r/J3a is the length of a primi-

tive reciprocal-lattice vector (see Fig. 2). A hexagonal
cosine function is defined for convenience,
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FIG. 2. (a) Geometrical structure of a close-packed metal
surface. As shown, the top layer exhibits a sixfold symmetry,
which is invariant with respect to plane group p6mm, i.e., point
group C6, together with the translational symmetry. (b) The
corresponding surface Brillouin zone (Ref. 14). The lowest
nontrivial Fourier components of LDOS arise from Bloch func-
tions near the I and K points. (The symbols for plane groups
are explained in, e.g., Ref. 22. )

The ratio C(/Cp can be determined by comparing Eq.
(8) with the corrugation amplitudes of the charge-
density contours obtained from first-principles calcula-
tions. For example, from Fig. 3 of Ref. 14, averaged
from five contours ranging from 2.5 to 12.5 atomic units,
we find C(/Cp=5. 7+ 1.0.

To calculate the tunneling current, we expand the
sample wave function near the nucleus of the apex atom

ro in terms of spherical harmonics YI

y=ga(„,i(((rr) Y(

where r= ~r —
rp~ and i((() is a spherical modified

Bessel function. ' The tunneling matrix element' for a

d, 2 tip state, i.e., (1=2,m =0) tip state, is proportional

with
~ k( ~

—=k ( =k/J3. By inspecting Eq. (5) and Fig. 2,
one finds that the only slow-decaying symmetric Fourier
sum of the Bloch functions near K is

2

y(r -exp ( —(c(z ) g cos (k ( Q,"x),
J ~0

where Qp=(1, 0), Q( =(—
—, , —,

' J3), Qz=( —2,
—

—,
' v3), and x~ =((rz+k()'~ is the corresponding de-

cay constant. The charge density is proportional to

~ y(r ~
. Combining with Eq. (4), the total charge density

is then

p(r) (x g ~
i(f(r)

~
=Cpe "'+C(e '

p (kx), (7)
E~EF

where Cp, C( are constants. For Al(111), a =2.88 A,

p =3.5 eV, it follows that (r=0 96 A .', a.
( =1.74 A

The corrugation amplitude of the charge-density con-

tour, Az as a function of z, can be obtained from Eq. (7),

(8)
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to a20. Using the properties of it (g) and Y~, it is straightforward to show that

M zx: a20 zx: tc t) y/t)z —
—,
' y. (10)

The values are taken at ro. As shown, the form of the tunneling matrix elements follows a simple derivative rule. ' For
nearly-free-electron metals, the lowest nontrivial Fourier components of Fermi-level LDOS is proportional to those of
the charge density. The tunneling current' is proportional to

~
M

~
. Comparing with Eq. (7), we find the total tunnel-

ing current:
EF+ev

I~ g ~
tc '1)'y/Bz' —

—,
' y('ee Co(-', )-'e '"'+C)(tc(/x' —

—,
' )'e '"'y(kx),

E EF

Using the values of K, tc~, and C~/Co, the corrugation amplitude of the topographic image (in A) is

hz =(C /Cp) [ (Ic /&
' )] (2') 'e ' +O(e ' ) =(58 ~ 10)exp( —1.56z), (12)

which is about 19.6 times greater than the charge-
density corrugation, Eq. (8).

A comparison of Eq. (12) with experiments3 is shown

in Fig. 3. The slope of the 1nhz-z curve from Eq. (12)
fits well with experimental data. The absolute tip-
sample distance is obtained from curve fitting, which

gives the shortest average tip-sample distance at 1=40
nA (with bias 50 mV) to be about 2.9 A. According to a
recent first-principles calculation of an Al-Al system,
the nucleus-nucleus distance of a mechanical contact is

about 2.3 A. The local tip-sample distance at an atomic
site is the average z plus about one-half of the corruga-
tion amplitude. This results in a closest distance —3.3
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FIG. 3. Interpretation of the atomic resolution observed on

Al(111). The predicted corrugation amplitude with a d 2 tip
state (solid curve) agrees well with the experimental data from

Fig. 2 of Ref. 3 (circles with error bars). The parameters of
the theoretical curve are taken from a first-principles calcula-
tion of Al(l I I) surface, Ref. 14. The tip-sample distance is

defined as the distance from the plane of the top-layer nuclei of
the sample to the center of the apex atom of the tip. That
shortest distance, obtained from curve fitting, agrees well with

direct measurements, Ref. 16. The corrugation predicted by

the s-wave model (dashed curve), that is, the corrugation of
Fermi-level LDOS contour (Ref. 5), is included for compar-
ison.
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A, which is about 1 A before a mechanical contact. This
is in good agreement with the measured tip-sample sepa-
ration, ' about 1 A. before a mechanical contact at tun-

neling conductance 10
An interpretation of the tip-treatment procedure de-

scribed in Ref. 3 is as follows. As reported, by applying
a bias of about —7.5 V on the sample for a while, the tip
withdrew by -25 A. After that, atomic resolution was

achieved. ' Actually, the W atoms on the tip surface,
surrounded with a thinner electron density than that in

the bulk, experience a reduced force from the electron
wind as comparing with those in the bulk. '~ The W

atoms on the tip surface thus exhibit a net positive

charge. The electrical field attracts the W atoms on the

tip surface towards the apex. As a result, a W cluster is

formed often with a single atom at its apex, which gives

rise to a metallic zi, z tip state. ' " This explanation is in

agreement with a recent electron-microscopy study of
the electromigration of W atoms on W tips. '

The localized metallic surface state on the tip is essen-

tial in STM for achieving atomic resolution. ' ' Besides
free-electron metals, atomic resolution (2-4 A) has been

observed on semiconductors' and metallic layered ma-

terials. For example, on MoSz, atoms with spacing 1.3
A are clearly resolved. ' However, atomic resolution

occurs only with an infrequent "good tip. "' ' ' Even

on reconstructed surfaces, for example, Si(111)7X7and

Si(111)J3XJ3-Al, with an atomic spacing -7 A, the

observed corrugation amplitudes and the slopes dz/dx
can be much greater than the predictions of the s-wave

model. ' It was proposed that the tip may pick up a Si
cluster from Si surface to form a p, dangling bond on

the tip, and atomic resolution is resumed. ' The STM
image from a p- tip state can be calculated using a

method similar to that for a d. 2 tip state. "-

The early STM theories asserted that the STM resolu-

tion was independent of tip material. As we have

shown, atomic resolution in STM requires localized me-

tallic p. or d. 2 tip states. Therefore, as tip materials,
only d-band metals (for example, Pt, lr, W) and semi-

conductors that tend to form p--like metallic dangling
bonds (for example, silicon' ) may provide atomic reso-

lution. A careful experimental study of STM resolution
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versus the chemical identity of the apex atom will fur-
ther clarify the nature of STM imaging mechanism.

In conclusion, we have presented a theory of STM im-

aging mechanism in terms of localized surface states on
the tip, for example, p, and d, ~ dangling-bond states.
With these tip states, the nucleus of the apex atom of the
tip follows a contour determined by the derivatives of
surface wave functions of the sample, which exhibits
much stronger atomic corrugation than Fermi-level
LDOS. The theory is exemplified by a quantitative in-

terpretation of the observed atom-resolved STM images
on close-packed metal surfaces.
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