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Steady-State Properties of a Finite System Driven by a Chemical-Potential Gradient
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A two-dimensional lattice-gas model with repulsive interactions periodically infinite in one dimension
and finite in the other is driven into a mass-transporting steady state by asymmetric chemical potentials
applied at the open edges. By computer-simulation techniques the steady-state current, the mass profile,
and the order-parameter profile are calculated. The driven system is found to display a nonequilibrium
phase behavior controlled by the mass flux.
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A new dimension has been added to the field of phase
transitions and critical phenomena by the study of
steady-state nonequilibrium systems. ' Only little is

known about such systems, in contrast to equilibrium
phase-transition phenomena. Prototypical steady-state
nonequilibrium systems are driven diffusive systems
which are not described by a global Hamiltonian. These
systems are thermodynamically open and continuously
receive energy from external sources. A fundamental
question concerns the nature of phase transitions in such
systems and their possible universal features. Our main

knowledge about driven diffusive systems derives from
studies of a particular microscopic lattice-gas model pro-
posed by Katz, Lebowitz, and Spohn' as a model of ion

transport in fast ionic conductors driven by external
homogeneous electric fields. This model has been inves-

tigated by field-theoretical methods and by computer-
simulation techniques, ' in the cases of both attrac-
tive and repulsive interactions. It has been found that
the driven steady-state system undergoes a nonequilibri-
um phase transition. In the case of attractive interac-
tions (conserved order parameter), ' the transition tem-
perature increases with the field strength and the critical
exponents deviate from their equilibrium values. In the
case of repulsive interactions (nonconserved order pa-
rameter), the transition temperature decreases with

field strength and there are indications of a tricritical
point. In this case the critical exponents remain at their
equilibrium values along the line of continuous transi-
tions. Another interesting aspect of these systems con-
cerns the properties of the interfaces between phase-
separated regions which occur at low temperatures in the
driven system with attractive interactions. ' ' The
characteristic feature of all these studies is that they
refer to systems driven by a long-range field which acts
with equal strength at each particle throughout the sys-
tem. Hence the effects found persist in the thermo-
dynamic limit.

Under many physical circumstances, however, exter-
nal driving forces and symmetry-breaking fields only act
directly on a finite portion of the system, e.g. , in the case
of concentration gradients in an osmotic cell or thermal

gradients in a solid. In these cases, a steady-state condi-
tion only applies to a finite system or to an infinite sys-
tem in the case of an infinite relaxation time. In this pa-
per we investigate such phenomena by proposing a mod-
el'2 of a diffusive driven system which supports mass
transport. The model, which is a kinetic lattice-gas mod-
el with repulsive interactions, is driven by external chem-
ical potentials applied at the edges of a finite system.
The model has been inspired by recent work on modeling
of diffusion-controlled oxygen ordering in finite samples
of high-T„superconductors of the YBa2Cu307-s type. '

The kinetic lattice model is defined by (i) a Hamil-
tonian and (ii) a dynamical principle which embodies the
imposed conservation laws. (i) The Hamiltonian is that
of a nearest-neighbor repulsive lattice gas defined on a
square lattice which is finite in one dimension and
periodically infinite in the other direction. Chemical po-
tentials p~ and ptt are applied at the rows of the two
open ends A and 8. The Hamiltonian reads

H=J+nnj p~ g n; ptt gn;,
&ij) iEA i GB

where n; =0, 1 is the occupation variable of the ith site
and J & 0. At low temperatures the pair interactions of
the model support a simple (2X2) ordering. (ii) The
dynamical principle, which strictly conserves the total
density, chosen to be p=(n;&= —, , makes the chemical
potentials act like particle "pumps" at the system edges.
Since the model has purely repulsive interactions, a con-
servation law for the density is necessary in order to sta-
bilize ordered phases. Particles enter or leave a particu-
lar edge by particle-hole exchange with the opposite
edge. The transition probabilities of this exchange only
involve the pair interaction potential and not the chemi-
cal potentials. Consequently, the chemical potentials
only enter the transition probabilities between the edge
rows and the interior of the system. The dynamics of the
interior of the lattice is that of Kawasaki nearest-
neighbor and next-nearest-neighbor particle hopping.
The total density (but not the order parameter) is hence
conserved. It is important to note that by imposing these
dynamics on the Hamiltonian via the particular particle
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pumps, the system becomes conceptually different from
that of an equilibrium system described by symmetry-
breaking boundary fields which only influence the behav-
ior over the range of the correlation length. ' For
p~&pq, the dynamics of the present model drives the
system into a steady-state mass-transporting state which
is a nonequilibrium state characterized by a net current
of particles through the lattice and a nonuniform mass-
density profile. The system is thermodynamically open
since it requires an input of energy to lift particles up in

the chemical-potential gradient across the system from
one open edge to the other; e.g. , the energy input is

ptt —pz when a particle is moved from A to 8. The
steady state of the system is one in which this input of
energy is balanced by the energy dissipated to the heat
bath. As a result of the exclusion principle, the current
vanishes in the thermodynamic limit, for all values of the
chemical potential, as Q-L, where L is the length
along the direction of the current. It should be noticed,
however, that for any finite value of L, the system will be
driven into a steady-state transporting state after a
sufficiently long equilibration time t Hence. , the steady
state of the system survives provided the thermodynamic
limit is taken in the order t ee and L ee. Further-
more, the present setup in a finite geometry provides a
simple means of directly measuring the transport proper-
ties of the system by choosing chemical-potential values
corresponding to the linear-response regime.

The steady-state properties of the kinetic lattice model
are studied by Monte Carlo computer-simulation tech-
niques. The calculations are performed in a rectangular
geometry for different lattice sizes. The case of asym-
metric chemical potentials is considered, p~ = —ptt =p.
The simulations are carried out for a series of diff'erent

lattice sizes L &M, where M denotes the length perpen-
dicular to the current. As an operational criterion for
the steady state we have specified that the flux measured
at several parallel planes through the sample, including
the edges, are the same within 0.5%. The statistics gen-

crated correspond typically to 10 -10 Monte Carlo
steps per site. The ensemble-average quantities calculat-
ed involve the mass-density profile p(x), which is also
averaged over the sites in the columns of the lattice per-
pendicular to the current, the energy fluctuations hE
=(P ) —(P)~, the mass flux Q, and the column order
parameter p, (x) (the ordering density). Furthermore,
we have calculated the mass-transport coefficient' D
=Q(dp/dx) ' in the cases where the mass-density
profile is linear and one has Ohmic conductance. The
various quantities are calculated as functions of chemical
potential p and temperature T.

In Fig. 1 are shown typical results for the mass-density
profile p(x) and the order-parameter profile p, (x) for a
temperature krtT/J 0.1, which is low compared to the
equilibrium transition temperature krt T„/J =0.56. The
data represent a 100X30 lattice. It is seen that for low
values of p the system is strongly ordered with an almost
uniform p, (x) and with a mass-density profile which is
almost constant but with a weak slope corresponding to a
slight current. When p increases there is a crossover to a
quite different steady-state organization of the system in

which the current effectively has destroyed the sublattice
ordering over a substantial range of the system. As p in-
creases, this range approaches a temperature-dependent
limit which is effectively reached in Fig. 1(c). This limit
is characterized by a saturation of p(x) at the two edges
of the sample. These phenomena may be understood as
follows: At zero temperature, due to the nearest-
neighbor repulsion, there is a finite current in the system
only for p/l~ 3. Since the chemical potential is not
conjugate to the order parameter, there is a progressive
destruction of the sublattice ordering away from the
edges. This leads to a nonlinear variation of p(x) which
may be seen as consisting of three different sigmoid seg-
ments which are merged at the two values of x which
effectively correspond to the two percolation limits of
p(x), i.e., enclosing the range of densities, at a given
temperature, which can support sublattice ordering.
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Fig. l. Mass-density profile p(x) and order-parameter profile p, (x) for a system with LxM=l00x30 sites, where L is the
length in the transporting direction. Results are shown for three different chemical-potential values p at a temperature ks T/J =0.l.
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Hence, the steady-state system is driven into a hetero-
geneous phase-separating state in which a region with
sublattice ordering is sandwiched between a gaseous
low-p phase and a solid high-p phase. The phase-
separated state is dynamically maintained. The shape of
both profiles, p(x) and p, (x), is only slightly sensitive to
the size of the system and effectively scales with xL
However, p, (x) has a measurable dependence on L in

the center and tends to the equilibrium value as

p, (x L/2)-p, (x L/2)(1 —aL ') .

As the temperature is raised, the range of the sublat-
tice ordering is diminished and above a certain tempera-
ture a perfectly linear mass-density profile establishes it-
self and only a finite-size rounded effect in p, (x) persists.
The vanishing of the sublattice ordering proceeds via a
nonequilibrium transition which will be analyzed below.
Before we describe the properties of this transition, we
show in Fig. 2 the characteristics of the current in the
system as a function of temperature and chemical poten-
tial. Q is monotonously increasing with p for all temper-
atures. This figure clearly demonstrates that, as the tem-
perature is lowered, a clearer threshold is established
below which only little current goes through the system.
At T 0, Q is a step function jumping from Q 0 to

Q 7.20&10 at p/J 3. Above this threshold, whose
value depends on the details of the interaction potential,
the current saturates as the chemical potential is in-

creased. The saturation is caused by the exclusion prin-

ciple which only permits a finite transport capacity of a
lattice system. The temperature variation of Q for
values of p above and below the zero-temperature
threshold is shown in the inset of Fig. 2. It is seen that Q
exhibits a maximum whose position is only slightly sensi-
tive to the value of p. The position of the maximum is at
a temperature about twice as large as the equilibrium
critical temperature.

Turning now to the phase behavior of the steady-state
system, we are faced with the problem of identifying a
suitable order parameter which characterizes the co-
herent order of the inhomogeneous system. For this pur-
pose we have chosen the sublattice ordering at the center
row of the system, 4 p, (x L/2). In Fig. 3 is given a
collection of data for p/J 4 in the case of a 100xM
system, where M is varied in order to illustrate finite-size
effects. When comparing with the corresponding order-
parameter data for the equilibrium system, also given in

Fig. 3, it is seen that the steady-state system is much
more strongly influenced by finite-size effects. Similarly,
the driven system is found to be subject to significantly
stronger fluctuations in the transition region than the
equilibrium system. Furthermore, these fluctuations in-

crease as M is increased. At the same time the current is
very stable. These observations indicate that the order-
ing process couples strongly to the current. This also im-

plies that the sublattice order is significantly enhanced
by the driving in the finite system as manifested in the
high-temperature tails in Fig. 3. For given values of p
and L, the order-parameter curve approaches a limiting
curve, as M ~, which is significantly suppressed
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FIG. 2. Current Q as a function of chemical potential p. In
increasing order, the different curves correspond to tempera-
tures kaT/J 0.05, 0.2, 0.3, 0.4, 0.5, 0.6, and 1.0. Inset:
Current as a function of temperature for two different
chemical-potential values. Q is in units of 10 Monte Carlo
steps per site per lattice parameter.

I.IG. 3. Order parameter 4(T) measured at the center row
of the driven steady-state system for p/J 4. Results are
shown for different system sizes 100XM, where M is the length
perpendicular to the transporting direction. M=30 (&), 60
(0), and 100 (&). For comparison, results are also shown for
an equilibrium system, i.e., p 0. The peculiar size depen-
dence for the equilibrium system at temperatures below the
transition is caused by the particular mixing of open and
periodic boundary conditions.
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below the equilibrium order-parameter curve. As l.
~ this limiting curve approaches the equilibrium,

infinite-system order parameter. Finally, as p is de-
creased, the limiting curve approaches that of the corre-
sponding equilibrium situation.

The mass-transport coefficient D(T) is found to be an
increasing function of temperature in the Ohmic regime.
Since the chemical potential is not conjugate to the order
parameter, that is, D(T) is not directly related to the or-
dering compressibility, D(T) attains a nonzero value at
the transition; i.e., the mass transport is not fully
quenched by critical slowing down. '2'5 If we define the
transition temperature T, (L,p) of the driven system as
the temperature where the M dependence of 4 becomes
negligible, we observe that for all finite values of L and p
the transition temperature of the driven system is

suppressed below that of the corresponding equilibrium
system. The present data are too imprecise to provide
information about critical exponents.

Whereas the details of the results presented in the
present paper are sensitive to the particular model stud-
ied, the general phenomena of steady-state mass trans-
port in a finite nonequilibrium system driven by an exter-
nal chemical-potential gradient are not. The phase tran-
sitions and the phase-separation phenomena in the driven

system reflect the underlying phase behavior of the equi-
librium system. Specifically, more complex phase-
separation phenomena involving several phases can be
triggered if further-neighbor attractive interactions are
allowed for. ' In the case of purely attractive nearest-
neighbor interactions, a simple phase separation between
a low-density phase and a high-density phase is found at
low temperatures. In this case the current couples
directly to the order parameter which is just the density.
This situation has recently been studied by a time-
dependent Ginzburg-Landau analysis' and it was sug-

gested that the driven system is equivalent to an equilib-
rium system in a globally applied linear chemical poten-
tial proportional to the current. Computer simulations
on the model qualitatively confirm this picture. If a
similar analysis applies to the present model with repul-
sive interactions, it may be anticipated that a global
linear chemical potential will provide a particular map of
the equilibrium phase diagram. If such a picture turns
out to be correct, it implies that it should be possible to
probe phase equilibria by a kind of "imaging' technique
involving transport in a finite-system geometry.

Finally, we wish to relate our findings to the properties
of the driven difl'usive system proposed by Katz, Le-
bowitz, and Spohn' and subsequently analyzed by a
number of workers. '' Firstly, our results apply to a sys-
tem which is driven by only boundary fields, in contrast
to the model by Katz, Lebowitz, and Spohn' which is
driven by a long-range global field. Therefore, the
effects of the drive on the phase transition in our model
do not survive the thermodynamic limit, although the

long-range structural organization persists at low tem-
peratures. Furthermore, the phase separation in our
model is induced by the drive, whereas in the model by
Katz, Lebowitz, and Spohn it is induced by simple sym-
metry breaking due to the conservation law imposed on
the global density. An even more significant difference is
that in our model there is a persistent inhomogeneity
along the transporting direction. This latter fact makes
it much more difficult to characterize and describe the
cooperative phenomena of the model.

The present paper presents a first attempt to model
nonequilibrium steady-state diffusive systems driven by
local fields. Further work is required to obtain a more
complete understanding of the phenomena. Such work
could involve time-dependent Ginzburg-Landau anal-
ysis' or renormalization-group theory. '
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