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Three-Dimensional Rayleigh-Taylor Instability of Spherical Systems
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A fully three-dimensional Rayleigh-Taylor instability of the pusher-fuel contact surface in a spherical-
ly stagnating system is investigated with the use of a new three-dimensional fluid code tMpAcT-3D.
Linear growth rates in the simulations agree quite well with analytical values which include spherical-
geometry effects. Saturation amplitudes of the exponential growth and free-fall speed following the sat-
uration are found to be, respectively, larger and faster than those of 2D simulations. Nonlinear bubble-
spike structures are also studied in detail.
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In the stagnation phase of imploding targets in

inertial-confinement fusion, a perturbation at the
pusher-fuel contact surface is Rayleigh-Taylor unstable.
It is important to investigate this instability since the
pusher-fuel mixing ' associated with the Rayleigh-
Taylor instability reduces the total nuclear reaction yield
to significantly lower values than those predicted by one-
dimensional simulations. There have been, however, few
three-dimensional calculations. %e have investigated
the linear and nonlinear features of the fully three-
dimensional (3D) Rayleigh-Taylor (RT) instability in

spherically stagnating targets through numerical simula-
tions. The RT instability in spherical geometry is quite
difl'erent from that in planar geometry because accelera-
tion and wavelength vary in space and time. The non-

linear evolution in 3D simulations, as will be shown in

this Letter, also significantly difl'ers from that obtained
by 2D simulations.

Any arbitrary perturbation of a surface wave in spher-
ical geometry can be expanded in spherical-harmonic
functions. Modes of 6, 10, and 12 are, for example, the
most dominant perturbations of the nonuniformities in

laser energy deposition in the case of a twelve-beam irra-
diation system, such as the Gekko XII laser at Osaka
University. There may exist more dangerous modes as a
consequence of the competition between growth and

damping, or stabilization due to such effects as viscosity,
surface tension, thermal smoothing, and ablative stabili-
zation. The most dangerous modes are probably much
greater than 6. However, the relative importance of
each of these processes and their combined effects, which
determine the growth of the higher modes, are not well

understood. As will be shown in this paper, saturation
amplitudes of the exponential growth become of the or-
der of the wavelength and consequently low modes have

large saturation amplitudes. In addition, mode coupling
of high modes also generates low modes. Therefore
both high and low modes could be important. At this
point, it is still difficult to simulate high modes in a fully
3D spherical geometry due to the limitations of the
present computer. In this paper, we investigate linear
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where pp(r), Sp, w, r, , and Y„"'(z)are the saved density
profile as a function of the radius, the initial perturbation

amplitude, the perturbation width, the radius of the con-
tact surface, and the spherical-harmonic function, re-
spectively. The spherical-harmonic function is defined as
follows:
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and nonlinear evolution of spherical-harmonic perturba-
tions with relatively low mode numbers.

For 3D simulations we have developed a new fluid
code, IMPACT-3D, which is a direct extension of IMPACT-

2D. Fully Eulerian and Cartesian coordinate systems
are employed. The basic conservation equations for
mass, momentum, and total energy density are numeri-
cally solved with an explicit total variation diminishing
scheme.

Initially, the pusher and ablator are assumed to have
constant velocity toward the center of the target, with
the fuel at rest. The shock wave then propagates
through the fuel and is accelerated to the center of the
target until it collides at the origin. After the collision,
the shock wave is reflected and collides at the contact
surface which is also accelerated to the center, and the
stagnation phase begins at this time. The spatial profiles
of physical values at the time when the stagnation phase
begins are saved in a file as a function of radius and used
as initial conditions for subsequent simulations. At the
start of each simulation, a small single-mode perturba-
tion is applied to the density profile near the contact sur-
face, as we have done in 2D simulations, with a
spherical-harmonic function as follows:

p)(r, 8, ttt, n, m) =pp(r+br Y„(8,4)),

432 !990The American Physical Society



VOLUME 65, NUMBER 4 PHYSICAL REVIEW LETTERS 23 JUL+ 1990

Radius
(pm)

Initial conditions
Density Pressure
(g/cm ') (Mbar)

Velocity
(10"cm/sec)

Fuel
Pusher
Ablator

&70
70-108
& 108

0.5
5.0
0.5

10
10
10

0
15
15

Simulation parameters

Grid points
Mesh size

Boundary conditions

81 x81 x81
1.5 pm (before stagnation)
1.0 pm (during stagnation)

sphere (before stagnation)
Full sphere (during stagnation)

TABLE I. Initial conditions and simulation parameters for
3D RT instability.
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where P„"'(z)is the Legendre function, n and m are the
polar and azimuthal mode numbers, respectively, and we

set Bo/r, . =0.01 and w/r, =0.5 to investigate the linear
growth rate of the 3D RT instability. The origin of the
target is located at the center of a cubic mesh system
which has 81&&81&81 grid points, and the physical
values on the boundaries are obtained by extrapolating
the inside values as an open free boundary condition.
The initial conditions and simulation parameters are
summarized in Table I. Since it is difficult to observe
distortion of the contact surface directly for such a small

perturbation, computational growth rates of the pertur-
bations are evaluated by taking the mode transformation
of spherical harmonics of the mass per unit area of the
target instead. That is, the mass density of the target is

integrated in the radial direction from the center of the
target to the outer boundary across the contact surface
for each polar and azimuthal direction. ' The summed
masses thus obtained as a function of the polar and az-
imuthal angles are expanded in the spherical-harmonic
mode. Figure 1 shows a typical time evolution of the
spherical-harmonic modes of the perturbations. Linear
growth rates are shown as a function of polar and azimu-
thal mode numbers in Fig. 2.

For the theoretical analysis of the linear aspect, we in-

troduce self-similar motion to describe the stagnation dy-

namics, which includes the eA'ects of spherical geometry,
acceleration, and wavelength varying in space and

time. " ' The RT instability is investigated by using a
linear eigenvalue equation for perturbations from the
self-similar solution. The growth rates at maximum
compression which correspond to the eigenvalues are
uniquely determined by three parameters and the polar
mode number (there is no explicit dependence on azimu-
thal mode number). The three parameters are the ratio
of the contact-surface radius to the outer radius of the
pusher (r, /r, ), the density jump (pf/p~), and the ratio of
the pressure at r, to that at the origin [po (r, )/po (0)]
(see Ref. 17 for details). We estimated them to be r, /r,
-0.62, p//p~-0. 1, and po (r, )/po (0)-0.1 from simu-

FIG. I. Time evolution of the spherical-harmonic modes for
(n, m) (3, 1) and (6,2).

lation results at maximum compression, and the growth
rates thus obtained are shown in Fig. 2 as solid bars.
There is good agreement, in both absolute value and
dependence on the mode numbers; i.e., the growth rate
depends only on the polar mode number n, and not on

the azimuthal mode number m in spite of different
geometrical shapes. It is noted that the acceleration
in the analytical model at maximum compression
(5.09&10' cm/sec') is also in acceptable agreement
with the acceleration in the simulations (4.36 && 10'
cm/sec ').

To study the nonlinear aspect of the problem, we in-

vestigated the saturation of the exponential linear
growth. Figure 3 shows the logarithm and square root of
the perturbation amplitude as a function of time for
(n, m) =(6,3). The exponential growth saturates around
r =0.18 nsec and is followed by the free-fall phase, in
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FIG. 2. Linear growth rates of simulations as a function of
polar and azimuthal mode numbers with the analytic values
(solid bar).
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FIG. 3. Time evolution of the spherical-harmonic mode for (n, rn)

a a a a I a ~ a a I ~ a a a0 0~ LJ

0.0 0.1 0.2 0.3
Time(nsec}

=(6,3) in (a) logarithmic and (b) square-root plots.

CO

~ i.o
CJ

~ H

~ 0.5

~ m=0

Q m=2

Q m=3
Q m=5

Q m=6

0.0
5

n
FIG. 4. Saturation amplitudes of exponential growth as a

function of polar and azimuthal mode numbers.

which the time evolution of the amplitude is described by

t}gt . The saturation levels of exponential growth are
shown as a function of mode numbers n and m in Fig. 4.
The exponential growth is found to saturate around

A, p, where 8 is the peak-to-valley amplitude of pertur-
bations and A, o is estimated to be A.o =2ttr„(t)/n at satu-
ration time. The dependence of the saturation ampli-

tudes on the polar mode numbers is similar to the 2D re-

sults, namely, for small n (-3) they are somewhat re-

duced compared with those for n 5 and 6. The satura-
tion levels also have a weak dependence on the azimuthal

mode numbers, in contradiction to the nondependence of
the linear growth rate on them. The free-fall coeflicient

ri is found to be nearly constant (0.8-1.1) within our

present simulation parameters. Comparing with the 2D
results, b-0.35ko and r1-0.2, the 3D case indicates
worse pusher-fuel mixing conditions both in larger satu-
ration level and in faster free-fall speed. It is noted that
the same features are observed in the 3D planar sys-

tern, '" but nonlinear bubble-spike structure and its feed-
ing mechanism, which leads to a larger saturation level

and faster free-fall speed, appear to be different between
spherical and planar systems, as is discussed in the fol-
lowing.

After saturation of the exponential growth, the RT in-

stability shifts from a linear growth phase to a free-fall
phase and forms nonlinear bubble-spike struc-
tures. ' ' ' The isovalue surfaces of the density, corre-
sponding to the contact surface, are shown in Fig. 5 for
(n, m) =(6,3), showing the nonlinear bubble-spike struc-
tures of the 3D spherical system. These figures are ob-
tained by one of the volume-rendering methods called
the marching cubes algorithm. During the free-fall
phase, the bubbles are gradually isolated from each other
and surrounded by the spikes, while the spikes are com-
bined with each other. The bubbles float into the pusher
and vortex rings are developed to feed the bubbles by
blowing ofl' the fuel into them, especially around the base
of the bubbles. As the pusher spikes penetrate into the
center of the target, the vortex rings are tightened and
enhance this feeding mechanism, and eventually lead to
large saturation levels of the exponential growth. In the
case of m-0 and m n, this fe-eding mechanism be-
comes ambiguous and the saturation amplitudes become
smaller than in the other cases, because the bubbles have

large structures and there are no strong vortex rings.
Thus the saturation amplitudes of the exponential
growth have a weak dependence on the azimuthal mode
numbers.

It is noted that when we apply a perturbation of the
opposite sign to the density profile near the contact sur-
face with the same amplitude and mode numbers, the re-
sults show the same nonlinear structures in which bub-
bles are surrounded by spikes. Thus the bubbles sur-
rounded by spikes are an essentia1 feature of the 3D
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FIG. 5. Three-dimensional shape of the contact surface
showing nonlinear bubble-spike structures for (n, m) (6,3).

spherical system in contrast with the 3D planar system in

which both bubbles surrounded by spikes and spikes sur-
rounded by bubbles can be formed according to the ini-
tial conditions.

We have presented here linear and nonlinear features
of the 30 RT instability in spherically stagnating targets
through numerical simulations with the 3D Auid code
IMPACT-3D. The linear growth was found to be in good
agreement with the analytical model, assuming the
spherical symmetric dynamics to be in self-similar
motion. As a nonlinear feature, the saturation ampli-
tudes of the exponential growth were evaluated as a
function of both polar and azimuthal mode numbers and
the free-fall phase following the saturation was charac-
terized by vortex rings, which tighten up and enhance
the feeding of the bubbles.
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