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We derive a chiral weak Lagrangian which interpolates the QCD-corrected four-fermion weak-
interaction Lagrangian to low energies. This is done using the Nambu-Jona-Lasinio model as a guide.
The derivation treats SU(3) breaking from the current-quark mass on an equal footing with the spon-
taneous chiral-symmetry breaking. It leads naturally to an additional factor of 2-4 enhancement of
bI —,

' K zz decay amplitudes.

PACS numbers: 11.40.Fy, 12.15.—y, 13.25.+m

Chiral symmetry has proven useful in describing
strong interactions of tr and IC mesons at low energies.
In contrast, the standard model of electroweak interac-
tion is applicable only above an energy scale where the
quark description is valid. In this Letter, we attempt to
link these two descriptions. We obtain a Lagrangian for
meson interactions at low energies which incorporates
both the chiral symmetry of the strong interaction and
the electroweak interaction.

We first point out that the usual nonlinear chiral La-
grangian used by most authors is not well suited for
describing weak interactions. Some lt -decay amplitudes
are proportional to the diA'erence in the pseudoscalar de-
cay constants Fg —F,. This vanishes to lowest order in

the conventional chiral perturbation theory. Thus the re-
sult depends on how an additional SU(3)i+R breaking is

introduced by hand. ' Here we shall start with a chiral

Lagrangian which gives a correct value for Ftc/F, at the
lowest order.

It is easy to understand why the traditional chiral La-
grangian may not be suitable for describing all processes.
This Lagrangian was constructed so that current-algebra
results could be easily obtained. Originally, this was
the top priority as the underlying strong-interaction dy-
namics was not known. We are now confident that QCD
will manifest itself in the form of a chiral Lagrangian at
low energies. It thus makes sense to ask if an alternative
chiral Lagrangian which is closer in line with QCD can
be constructed.

A low-energy eA'ective theory which reflects many
properties of QCD is that of Nambu and Jona-Lasinio.
A chiral Lagrangian has been derived using this eA'ective

low-energy theory as a guide. Following these refer-
ences, we ~rite

LN& =q(ittf m)q+2G—i g q, q,
a

a+ qa 1 j'5/a
2

where k, is a fiavor U(3) matrix and the color index a is summed over (below, we shall drop the color index). The di-
agonal current-quark mass matrix m breaks the SU(3)L+R symmetry.

To derive a chiral Lagrangian, introduce pairs of scalar and pseudoscalar auxiliary fields (S„cr,) and (P„tr,), re-
spectively, with

I = QDSDaDP Dtrexp'i d x S, a, —
q q +P, tr, —

q iyqq
2 2

(2)

With this constraint, we obtain

Z„„„g=+DqDqDS, DP, expi d xLJ(S„P,)„Da,Dn, exp'i d x[(S,—m, )a, +P, tr, +L„(a„tt,)) ',
a

where

Lf =qikq —S,q q
—P,q i y&q, (4)

L„=2Gig(n,+cr, ), m, =Tr(m A.,). (s)
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Now integrations over a, and x, can be performed trivially by completing the squares.
The generating functional becomes

r

Z,t„„g=„tDMDMexp —i„dx Tr[(M —m ) (M —m )] Zf(M M),
1

where M =S+iP, S =g, -o(k, /2)S„and P =g, -o(A,,/2)P, .
The fermionic determinant can be written in the form

(6)

Zf(M M) =„DMDM exp'i d x[Z 'Tr(8„MB"M )+H(W, W, W )] ', (7)

where Z represents a logarithmically divergent factor
generated from performing the integration over quark
loops. The chiral invariance implies that H is a function
of W =Tr(M M), W Tr(M MM M), W detM
+detM, and appropriate higher-order derivative
terms.

If we take a specific form for H,

H p&fTr(M M) —).Tr(M MM M), (8)

the Lagrangian obtained from Eqs. (6) and (7) reduces
to the cr model. Nonvanishing (M) implies spontaneous
chiral-symmetry breaking. In the present formalism
(M) must be interpreted to be the consitutent-quark
mass matrix [see Eq. (4)]:

m„0 0
(M)= 0 m, 0 (9)

0 0 m,

Also, after the field renormalization, one can derive an

expression for the pseudoscalar-octet (z;~) decay con-
stant:

mI'+ mj
F~j

Z
This leads to a relation

Fg m„+m,
3F m„+md

(io)

5, +4Go., —m =0, (i 2)

which is in agreement with the experimental value of 1.2.
In the conventional approach, 6 the spontaneous break-

ing of SU(3)z XSU(3)p symmetry is considered first.
Then explicit SU(3)L+R-symmetry breaking from mo is
considered as a perturbation. In the present approach,
as evidenced by Eq. (9), the formalism dictates the
manner in which these symmetry-breaking effects must
be treated.

For example, consider the constraint

F;, -m; +m~ —2G~(qq;+q, q~) . (i4)

Again, SU(3)L+p breaking from m enters directly into
that of F).

The presence of SU(3) breaking makes the analysis
more complicated. Since FgeF„we cannot set M M
=1. For this reason the fermionic determinant will, in

general, contain more terms compared to that for the
linear case.

There is also another crucial physics difference be-
tween the two schemes. Consider the mass of the a
meson:

M +M
(2Fx —F„)(Fx—F )

at the tree level. Previously, a lack of clear evidence for
a resonance in the S-wave zz scattering motivated the
choice of M ~; i.e., Fg F„in the nonlinear limit.
In fact, however, the S-wave phase shift is consistent
with the presence of a o pole. Recent experimental data
on the zz phase shift measured in the reactions e+e

x+z e+e and PP z+z PP, as well as the NN
phase shift, also require the presence of the a meson with
a broad width.

Thus the scalar mesons contribute to the dynamics of
the present approach.

Now consider the weak-interaction Lagrangian,

GFL~= s~c~c3+R;(p)Q, ,
2 I

(i6)

where we take R, to be defined at a renormalization
scale p =0.8 GeV.

One might obtain the chiral weak Lagrangian by
rewriting Q; in terms of meson operators: '

! treats SU(3)L+x-symmetry breaking from mo and the
spontaneous SU(3)LXSU(3)z breaking from (q;q;) on
exactly the same footing.

Also, Eq. (10) can be written as

m; =m; —2G)(q;q, ), (i3)

a Nambu-Zona-Lasinio gap equation. This constraint

which is the equation of motion for ~, derived from Eq.
(3). Taking the vacuum expectation value (M;j) =m;8;, ,

(a;, ) = —, (q;q;)b;, , we obtain

VPJ =q; y"q~ = —i ([M,8"M"]+[M,8"M] )~;,

~i"=q y'"y''q

= —i( —[M, a"M']+ [M', a M]),,

q„q„=—(i/4G, ) (M —m '),,

(i7)
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where these identities were obtained from Noether s theorem. Here m, G 1, and M are renormalized quantities. Note
that the theorem does not fix the currents uniquely. The term with m is added to the expression for q;q~ so that it is

consistent with Eq. (12).
For the Q6 operator, we have shown that the above approach yields the correct answer. Note that Q6 is identical in

structure to the interaction term of the Nambu- Jona-Lasinio Lagrangian given in Eq. (1). Thus the "derivation" of
the strong chiral Lagrangian can be used to "derive" the bosonized form of Q6.

For completeness we record here the chiral weak Lagrangian,
6

L=Tr(B„Mti"M )+p Tr(M M) —XTr(M MM M)+ Tr[m (M+M')]+ s~clc3 g R;Q, +H.c. , (18)
4G] i ]

Ql = (V —A )p3(V —A ) 1 1, Q2 = (V —A ) (3(V —A ).1, Q3 = (V —A ).3 Tr(V —A ),

Q4=[(V —A)(V —A)]p3, Q5=(V —A)23Tr(V+A), Q6= —(I/2G~ )[(M —m )(M —m ) ]23,
(19)

where we have dropped small correction terms. This is

identical to the vacuum saturation approximation except
for the factor Flr/(3F, —2F~). The importance of intro-
ducing SU(3) breaking properly is demonstrated by the
fact that this additional factor enhances the AI = —, am-

plitude by a factor of 2.2-4. The lower value corre-
sponds to evaluating Flr/(3F, 2F~) with F„—-93 MeV
and F~ =114 MeV, and the upper value corresponds to
rewriting the factor as (m„+m,)/(4m„—2m, ) with

m„=300MeV and m, =500 MeV. Obviously, because
of large cancellation in the denominator, the enhance-
ment factor is sensitive to the higher-order chiral correc-
tions. We shall leave this correction to future publica-
tions.

We can trace the origin of the enhancement factor to
the o. propagator in K o zz amplitude by writing

F
3F,—2Fg.

M„—M„Fg.
M„—M F

(22)

Here M —Mq. =D '(Mg). It is important to note
that the resonance width iM I is absent in the o. propa-
gator. According to Watson's theorem, the final-state
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where V and A are given in Eq. (17). The contraction
over the Lorentz index p is understood. Here we have

dropped terms resulting from Fierz transformation of
four-quark operators Q~-Q6. They are present in gen-
eral but do not give a substantial contribution at the
present level of consideration. We have evaluated ampli-
tudes for K zx decay. Using the notation

&~'~- IQ, IKO) =-&~'~'Ig, IK')

=i&&~+"
I g| I

K+
&

(20)
=~2&~'"

I g2 IK'& =x,
(~'~-

I g, I
K'& =&~'~'I g, I

K'& =I,
our result is

X =i JZF, (M' —M')
(21)

Y= 4i J2—
0 q

(FK F,)—Mg Fg

interactions for the xn channel with isospin I can be tak-
en into account by multiplying the amplitude by e' ',
where 81 is the S-wave (zz)1 phase shift. Any diagram
which produces the absorptive part of the a propagator
can be included in the final-state interaction. In order to
avoid double counting, the lowest-order tree-level o
propagator must be used. Our explanation of the BI=

&

rule requires M =700 MeV. The width can be O(m ).
While experimental data suggest the necessity for the cr

meson, further experimental study to clearly establish
the resonance is urged. Our enhancement can be also
studied in lattice computations.

If our assumption that the Nambu- Iona-Lasinio mod-
el represents the low-energy QCD dynamics is correct,
QCD requires us to treat the o meson as a dynamical de-
gree of freedom. This in turn leads to a linear cr model
and the explanation of the AI = —' rule.

The coefficient function R~ —R6 has been evaluated
by many authors. In our numerical comparison, we
shall use the result of Bardeen, Buras, and Gerard.
Traditionally, the mass-independent renormalization-
group equation is used in computing the QCD correc-
tion. Bardeen, Buras, and Gerard point out that the to-
tal Glashow-Iliopoulos-Maiani cancellation for the
anomalous dimension at Q'-~ m, assumed in the previ-
ous considerations is unreliable. A full analysis relaxing
this assumption leads to R6 which is 2-3 times larger
than those of earlier references. The enhancement factor
comes from integrating the c-quark contribution over the
entire region between p and M~ as opposed to integrat-
ing over only the region between p and rn,-. This is a
more precise way of treating the charm-quark contribu-
tion to R6. We refer to the original references for de-
tails. Figure 1 shows our result for

I
(zx(I =0)

I

x H I K ) I. There are two sets of curves corresponding
to A =0.4 and 0.3 GeV. These parameters are chosen to
be identical to those of Bardeen, Buras, and Gerard for
ease of comparision. The shaded region corresponds to
the variation of the Fg/(3F„—2F~) factor. Our result
for the hl= — amplitude A(K+ z+x ) =2.5x10
GeV is identical to that of Bardeen, Buras, and Gerard.

As is seen in Fig. 1, the additional enhancement of
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A=0.4 GeV
r =1.33

A=0.3 GeV
r =1.33

A=0.4 GeV
r =1.22
A=0.3 GeV
r =1.22

that the /JI = —. amplitude receives additional enhance-
ment by a factor of F~/(3F, —2' ). With this factor,
the long-standing AI= —' enhancement problem can be
resolved.

Much work remains to be done along these lines. As
pointed out by Bardeen, Buras, and Gerard, ' meson
evolution from p -800 MeV to p =mlr must be comput-
ed before a serious comparison between theory and ex-
periment can be made. Also, vector-meson dominance is
an important part of low-energy physics. Both of these
effects should be included in the chiral Lagrangian
framework. ' '
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FIG. 1. Comparison of Eq. (21) with the experimental
values for the hI 2 K zx decay amplitude. The two sets
of curves correspond to A=0.4 and 0.3 GeV. These parame-
ters are chosen to be identical to those of Bardeen, Buras, and
Gerard (Ref. 9) for ease of comparison. Since FN/F at

p 800 MeV is not known precisely, we let the ratio vary from
1.22 to 1.33.

F&/(3F, 2Frr ) makes —the theory consistent with experi-
ment with admittedly large theoretical uncertainties.

In summary, we have chosen a specific form of chiral
Lagrangian which is consistent with the Nambu-Jona-
Lasinio model. We argued that the properties of low-

energy QCD are reflected more closely in this version of
the chiral Lagrangian. The key difference between the

present approach and the conventional approach is that
the spontaneous SU(3)L XSU(3)g-symmetry breaking is

treated in the presence of the current-quark mass which

breaks SU(3)i+R at the tree level. A chiral weak La-

grangian was derived in this framework. As a first test,
K 2z amplitude has been computed. It was found
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