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Characterizing Loss of Memory in a Dynamical System
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We propose here a new method to characterize the loss of memory with time in a chaotic system from

a time series. This is done by introducing time-dependent generalized exponents. The asymptotic behav-

ior can distinguish between chaotic systems which lose memory of the initial conditions completely, those
which partially retain the memory, and those (borderline of chaos) which fully retain the memory. We
give illustrative examples of the logistic and Henon maps.

PACS numbers: 05.45.+b, 06.50.—x

Sensitivity to initial conditions is one of the most im-

portant characteristics of a chaotic attractor. ' Two
close-by trajectories diverge exponentially with time, the
rate of divergence being characterized by the Liapunov
exponent. Thus a small uncertainty in the initial condi-
tions grows rapidly and after some time it becomes al-
most impossible to predict the phase-space trajectory.
We may say that the system progressively loses the
memory of the initial conditions. The time required to
lose the memory of the initial conditions depends on the
rate of divergence of trajectories and the amount of un-

certainty of the initial conditions.
The Liapunov exponent characterizes the exponential

divergence of close-by trajectories reasonably well for
short times. However, for longer times when the dis-

tance between the trajectories approaches the scales of
the order of the size of the attractor, the Liapunov ex-
ponent is not very useful. In this paper we introduce a
new method of analyzing the loss of memory of a chaotic
signal which is suitable for all times. The method makes
use of the concept of fractal dimension and generalized
dimensions and introduces time-dependent generalized
exponents. It reduces to an analysis similar to that given

by the Liapunov exponent for shorter times. The asyrnp-
totic behavior is very interesting and is able to distin-
guish between difl'erent chaotic behaviors.

Consider a time series fx(, I, k =1,2, . . . , which

specifies the values of an observable x at successive times

EI, . We assume that the transients have already died.
We first consider a one-dimensional situation. Divide
the maximum range of the variable x in A intervals of

equal length /. Let p; be the probability that the variable
x lies in the ith interval. We define a joint probability

p, , (t), i,j =1,2, . . . , N, as the probability that the vari-
able x lies in the ith interval at some time t' and in the
jth interval at time t+t', i.e., after a time t. The joint
probability p;, (t) will be independent of t' since we as-
sume translational invariance in time.

We now introduce the time-dependent generalized ex-
ponents Dq ((t) and Dq(t) for the above cover ( —~ ( q
& ~) by the following relations:

(la)

and

rq(t) =(q 1)Dq(t) = lim rq ((t) . (lb)

The prime in the summation of Eq. (1a) means that the
sum is over only those i and j values for which the proba-
bility p, , (t) is nonzero. Do((t), D~ ((t) and D2((t) are
the time-dependent fractal exponent, information ex-
ponent, and correlation exponent, respectively. The ex-
ponents that we have defined use the capacity notion of
exponents since we use an equal length scale. We also
note that Dq(t) defined by Eqs. (1) can be treated as the
generalized dimensions in the two-dimensional space
defined by the vectors (x&,x(, +(), k =1,2, . . . .

We now consider the situation for finite /. There are
two limiting cases. For t =0, p, ((0) =p, 6, (. Clearly
our time-dependent generalized exponents reduce to the
usual time-independent generalized dimensions of the at-
tractor, i.e., Dq ((0) =Dq On the other hand, after. a

1990 The American Physical Society 389



VOLUME 65, NUMBER 4 PHYSICAL REVIEW LETTERS 23 JUL+ 1990

large time interval, if we assume that the system has
completely lost the memory of the initial conditions, then
we get p;, (t) =p,p, . In this case D, 1(t) =2D, Th. us

doubling of the generalized exponents will indicate corn-
plete loss of memory. We will see that in some situations
this doubling does not occur, i.e., the memory is never

completely lost even when we have exponentially diverg-
ing trajectories as indicated by a positive Liapunov ex-
ponent.

We note that our condition of complete loss of
memory corresponds to the mixing property which states
that lim, Pr(p 'BAH) Pr(B)Pr(A) for all sets A
and B with p' a dynamical map.

It is possible to relate the time-dependent fractal ex-
ponent Dn 1(t), the Liapunov exponent X, and the length
scale I. In t time steps an interval of width I will be
mapped into length R le '. If for times larger than
some time t, R becomes of the order of the size of the at-
tractor, we can roughly say that the memory of the ini-
tial conditions is completely lost; i.e., given an uncertain-

ty of I in the starting value of the variable x, the value of
x after time t may lie anywhere in the attractor and is
thus completely unpredictable. The size of the attractor
when measured with the scale I is I 'I. Thus we get
the relation

t = —Do(lnl)/X . (2)

For time t & t, R is less than the size of the attractor.
The number of lengths, that R covers is R/I. If we start
from N initial lengths, they are mapped into NR/I
lengths. Starting with the entire attractor, i.e., N
=I ', we get

Dp((r) =Dp —At/Inl.
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FIG. 1. r„,i(t) vs q plots for different times for the logistic
map with p 4.0 and I 0.01. The two dashed curves corre-
spond to the t„l(t) values fo, r r 0 and values obtained by dou-
bling its values (Ref. 6). The solid curves correspond to rq, i(r)
values for different times. The number of points of the time
series chosen in this and all the other calculations is such that
each box has at least forty points on the average.
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while the exact analytical value is X, =ln2 =0.69. In Fig.
2 we also show the behavior of Do 1(t) for I =0.0033 ex-
pected from Eq. (3) with l=ln2 (dashed line). We see
that the numerical values show a systematic deviation.
They are larger than those given by Eq. (3) for small r

and smaller for large t. Hence the estimated value of the
Liapunov exponent is smaller than the actual value and
serves as a lower bound. We also find that the estimate

We now illustrate the use of our formalism by consid-
ering the example of the logistic map given by x„+~
=px„(1 —x„). We have analyzed the chaotic data for
three different values of p.

(a) p=4.0.—For this value of p the logistic map
shows a fully developed chaos. The values of rq &(t) as a
function of q for different times are shown in Fig. 1 for
I=0.01. We see that around t =9, rq l(t) values reach
about twice the values at r =0. For q) 0, rq 1(t) in-

crease steadily as a function of time. However, for

q &0, rq i(I) values decrease rapidly and then increase.
These values correspond to low probabilities. In this re-

gion (q & 0) numerical errors are larger and it is difficult

to interpret the results. The fractal exponent Dn i(r) as a
function of t is shown in Fig. 2 for different values of I.
There is a sharp rise and subsequent flattening as we ap-
proach Dp i(I) =2. The time required to reach the value
2 obviously depends on I. The rise from t =0 to t =1 is
an artifact of our choosing equal length scales and not
the natural length scales of the system. The region of
steady rise of DO I(t) can be used to obtain the Liapunov
exponent by using Eq. (3). We get the average X=0.60,
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FIG. 2. The fractal exponent Dp J(t) as a function of t for
four different values of I for the logistic map with p =4.0. The
dashed line shows the behavior of Do I(t) for I =0.0033 and
k=ln2 according to Eq. (3).
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of X improves as I decreases.
(b) p =3.5699. . . .—This value of p gives the period-

doubling at tractor. The Liapunov exponent is zero.
Thus we expect that fractal exponent Do&(r) should
remain invariant in time. We find that this is indeed the
case. [See the triangles in Fig. 3. There are some small
oscillations which may be due to not using natural length
scales and the Do&(t) values are larger than the fractal
dimension for the attractor due to the finite value of l.]
This indicates that there is no loss of memory and the fu-
ture is completely predictable. '

(c) p 3.59687.—This value of tu gives a two-band
attractor. The points represented by circles in Fig. 3
show Do &(t) as a function of t for I 0.01. The behavior
for small t is similar to the p =4 case. However, the
asymptotic behavior is quite different. First, the asymp-
totic value of the fractal exponent is clearly less than
twice its value at t 0. This shows that the system never
loses memory of the initial conditions completely. This
result may be because the chaos is not fully developed.
The variable x„keeps on alternating between the two
bands and we always know the band in which it lies at
any time once the initial band is known. Second, Do &(t)
alternates between the two values asymptotically. This is

because the two bands have different widths and we have
used the capacity notion of dimensions. For small t a
straight-line fit to the data in Fig. 3 yields k 0.13 in

comparison to the actual value 0.17.
Let us now consider the limit I 0. From Eq. (3) we

see that the slope of Do ((t) vs t tends to 0 as I 0 and
hence for any finite t, Do &(t) tends to Dr&and not 2Do as
I 0. The slopes of actual curves of Do&(t) in Fig. 2

are also decreasing as I 0 and seem to support this
conclusion. Based on this let us conjecture that

in[&(;, ;,) &[p(„„),&(t))'l
Dq &(r) =

q
—

1 lnl
(4)

lim& oDq &(t) =Dq. This implies that there is no loss of
memory if the initial conditions are specified with infinite

precision. This is natural since we have deterministic
chaos. Thus the above conjecture allows us to conclude
that the loss of memory of the initial conditions is a

property of coarse graining. We note that the two lim-

its I 0 and r —~ are not interchangeable. Taking the
I 0 limit first and the r ee limit afterwards gives us

the generalized dimensions Dq. On the other hand, tak-

ing the t ~ limit first we get the asymptotic behavior
discussed for the finite-I case above.

We now consider higher-dimensional systems. For a
d-dimensional system, Eqs. (1) can be easily generalized

by letting the indices i and j represent d-dimensional

boxes. If we have a time series in only one variable, we

can use the method of time delays to construct the state
vectors xk =(x&„x&,+), . . . , x&, +d-)), k =1,2, . . . , where

d is the embedding dimension. The index i for the box

is replaced by the string (i(,i2, . . . , id), where i is the

index for the length intervals in the mth direction of the
embedding space. The time-dependent generalized ex-

ponents are now given by Eqs. (1) with the summation

indices i and j now representing d-dimensional boxes,

(i(, iq, . . . , id) and (j),j2, . . . ,jd), respectively. Again,
for t =0 we get the usual generalized dimensions of the
attractor and for large times, if memory is completely
lost, we get doubling of the exponents.

However, this procedure is cumbersome for actual cal-
culations of Dq(t) since it requires working in a space of
dimension 2d. A variant of time-dependent generalized
exponents for d ) 1 which gives the same information
can be introduced by defining the modified time-

dependent generalized exponents Dq &(t) as
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where p(„,,), (r) is the probability that the state vec-

tor x lies in the box (i(, . . . , id) at some time r' and the

variable x lies in the length interval j after a time
r+d —1, i.e., at time t+r'+d 1. This d—efinition of
Dq &(t) requires calculations in a space of d+1 dimen-

sions only. For t 0, we again get the usual generalized
dimensions of the attractor, i.e., D~. In the other limit

for large time if we assume that the variable x complete-

ly loses memory of the initial-state vector, then
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FIG. 3. The fractal exponent Do~(t) vs r for the two-band

case of logistic map for I =O.OI (0). &'s are similar points for
the period-doubling attractor.

p(i, , i, )&«) —p(i, , I,,)p&

For a chaotic attractor with Dp & 1, the projection along
any direction is expected to be continuous. Thus, in this
case Dq ((t) =D~ (+ l.

We now consider the example of a two-dimensional
map, namely, the Henon map, (x„+),y„+()=(y„+1

ax„,bx„), with a—=1.4 and b=0.3. Let us consider
the time series in only one variable, say, x. We next con-
struct the state vectors x&, =(xt,xi+)). Using this state
vector the time-dependent generalized exponents can be
calculated. We have carried out this calculation by both
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FIG. 4. Dol(t) as a fun, ction of r for l 0.05 for the Henon
map.

the methods described above. First, we use Eq. (la), i.e.,

use two-dimensional boxes for the indices i and j. We
find that the fractal exponent Do i(t) doubles asymptoti-
cally. This shows that loss of memory of the initial con-
ditions is complete in the Henon map. The value of the
Liapunov exponent obtained from the slope of Do i(t) vs

t curve is 0.32 [see Eq. (3)]. The known largest value of
X, for the Henon map is 0.418. '

Next we use Eq. (4) and obtain the modified ex-
ponents D~ 1(r). Figure 4 shows Doi(t) as a function of
1 for l=0.05. The increase of I in fractal dimension
confirms the fact that there is complete loss of memory.
The value of the Liapunov exponent obtained by using

Eq. (3) is 0.33.
In this paper we have presented a new method of

analyzing the time evolution of a chaotic signal. In par-
ticular, we know how the loss of memory of the initial
conditions takes place at each time step. The change in

the time-dependent fractal exponent is a measure of this
loss of memory. Complete loss of memory is represented

by doubling of the time-dependent generalized ex-
ponents. Our method is able to distinguish between
chaotic signals which lose memory completely and those
which retain partial memory of the initial conditions.
Thus we expect our method to be useful in knowing the
kind of chaotic attractor that one has. We do not know

of any other simple method which can do this. In addi-
tion, we also get a rough estimate (actually a lower
bound) of the Liapunov exponent. We also note that the
loss of memory appears to be a property of coarse grain-
ing.

Our analysis has also relevance for predicting a chaot-
ic time series. Farmer and Sidorowich" find that the
normalized error of prediction approaches 1 for large
prediction times in some systems while it remains less
than I in other cases. These two situations will corre-
spond to an asymptotic value of Dv i(t) which is twice
the original value and an asymptotic value which is less
than twice the original value, respectively.
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