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Transport through a Finite One-Dimensional Crystal
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We have studied the magnetotransport properties of an artificial one-dimensional crystal. The crystal
consists of a sequence of fifteen quantum dots, defined in the two-dimensional electron gas of a
GaAs/AlGaAs heterostructure by means of a split-gate technique. At a fixed magnetic field of 2 T, two
types of oscillations with different amplitude and period are observed in the conductance as a function of
gate voltage. A simple model demonstrates that the oscillations arise from the formation of a miniband
structure in the periodic crystal, including energy gaps and minibands which contain fifteen discrete

states.

PACS numbers: 73.20.Dx, 72.10.Bg, 72.20.My

One of the basic principles of solid-state theory is the
formation of an energy-band structure in a regular crys-
tal. The coupling between atomic states in a perfect
crystal results in a collective state which is characterized
by energy bands separated by energy gaps. The conduc-
tivity properties of a solid strongly depend on the loca-
tion of the Fermi energy in the band structure. The solid
is an electrical insulator (at 0 K) if the Fermi energy is
within an energy gap or an electrical conductor if the
Fermi energy is within an energy band.

The advances in material technology over the last two
decades have suggested the possibility of making arti-
ficial superlattices in which one could study these basic
solid-state properties.! The first experimental evidence
for the formation of a band structure in a vertically
grown superlattice was reported in the seventies by Esaki
and Chang,? who found a negative differential conduc-
tance in the nonlinear transport properties. The linear
transport in terms of resonant transmission in a finite su-
perlattice has been studied theoretically by Tsu and
Esaki’ and more recently by others.*® It was shown
that when the Fermi energy of the system is varied, the
transmission through a finite superlattice reflects the en-
ergy gap as well as the discrete states forming the so-
called minibands. In a normal crystal, the discrete states
in the energy bands are usually unnoticeable due to the
large number of participating atoms.

In this Letter we study the transport properties of an
artificial one-dimensional (1D) crystal. The crystal con-
sists of a sequence of fifteen quantum dots, which are
electrostatically defined in a two-dimensional electron
gas (2DEG) by means of two metallic gates on top of a
GaAs/AlGaAs heterostructure. The inset of Fig. 2
shows a schematic layout of the device. The ungated
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2DEG has an electron density of 2.7%10'> m ~2 and a

transport mean free path of 10 um. A negative voltage
of —0.44 V on the gates depletes the electron gas under-
neath the gates and forms a corrugated ballistic channel
in the 2DEG of 3 um length and a width alternating be-
tween 250 and 400 nm. The voltage V,, on the first gate
defines the depletion region around the “fingers” (in to-
tal, sixteen fingers or, correspondingly, fifteen quantum
dots) at a period of 200 nm. The effect of lowering
(making more negative) the voltage V> on the second
gate is threefold. The increasing depletion area around
the second gate reduces the coupling between adjacent
dots, reduces the area of each dot, and lowers the Fermi
energy in the conducting regions. The detailed shape of
the depletion region in the 2DEG is unknown, but
presumably resembles a periodic (asymmetric) saddle-
shaped electrostatic potential with the maxima in the
narrow regions.

In this 1D crystal device the spatial quantization is
realized in all three directions, which differs from earlier
studied superlattices in which only one®’ or two® direc-
tions were quantized. The transport properties of single
quantum dots, fabricated with the same split-gate tech-
nique, have been studied earlier in zero magnetic field’
as well as in a high magnetic field.' The observed oscil-
lating conductance demonstrated the formation of zero-
dimensional (OD) states in a single quantum dot. In a
sequence of equal quantum dots with equal coupling to
nearest neighbors, the OD states develop into mini-
bands.’"® The number of states within a miniband is
equal to the number of dots and the energy gap between
consecutive bands is determined by the coupling between
the dots. Weak coupling yields a narrow band and a
large gap, while strong coupling will result in a wide
band and a small gap.

We have performed conductance measurements as a
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function of gate voltage V,, on the second gate, for
several fixed values Vg, on the first gate, and for several
fixed magnetic fields. The measurements are performed
at a temperature of 10 mK with a standard lock-in tech-
nique using ac current biasing of 0.2 nA rms. At zero
magnetic field, no evidence has been found for the for-
mation of a band structure. Nor did we find quantized
plateaus in the conductance resulting from the transverse
confinement in the corrugated channel. The quantiza-
tion, which would indicate adiabatic transport, is de-
stroyed due to intersubband scattering either by the
fingers or by impurities in the 3-um-long channel.!' At
a constant magnetic field of 2 T we find quantum Hall
plateaus at multiples of e /A in the conductance G as a
function of gate voltage Vg>. The effect of a magnetic
field is to establish adiabatic transport through the cor-
rugated channel, as is known from theoretical'> and ex-
perimental'® work on two quantum point contacts in
series. In the case of adiabatic transport, the subbands
can be treated as independent 1D current channels. The
only scattering now takes place within a single subband
at the potential maxima defined by the fingers. In Fig. |
the first (spin-resolved) conductance plateau is shown for
several fixed values of Vg (which defines the potential
around the fingers). Below the first plateau (i.e.,
G <e?’/h), large oscillations are seen, while in the pla-
teau region, deep downward peaks enclose smaller oscil-
lations. Above the plateau, only downward peaks are
seen, which are clearly separated. Some of the deeper
peaks in Fig. 1 are marked to indicate their shift when
the voltage V) is varied.

The plateau region of the curve with V1 =—045V is
measured and shown enlarged in Fig. 2. As can be seen,
the two deeper peaks enclose fifteen oscillations, which
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FIG. 1. Conductance as a function of gate voltage 2 V,> on

the second gate at a fixed magnetic field of 2 T and for
different values of gate voltage 1 V,, on the first gate. Corre-
sponding peaks are marked. The curves have been offset for
clarity.
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corresponds exactly with the number of quantum dots in
the 1D crystal. The deeper peaks can be associated with
energy gaps (the decrease of the conductance is then due
to the location of the Fermi energy within a gap), and
the smaller oscillations with the discrete states in the
miniband. This interpretation will be substantiated
below by a numerical calculation. The formation of en-
ergy gaps is also indicated by the downward peaks above
the plateau region in Fig. 1. The spacing between these
downward peaks differs from those in the plateau region,
which may be related to additional peaks originating
from the second subband. In the plateau region the
average conductance is nearly constant (here the
transmission probability of the lowest subband through a
single barrier is nearly equal to 1) indicating that the
coupling is approximately constant, which yields approx-
imately constant energy gaps. The effect of lowering the
gate voltage V> here is mainly the decrease in Fermi en-
ergy and the reduction in dot area. Note that the reduc-
tion in area results in larger energy separations which in-
creases the bandwidth. Both effects move the Fermi en-
ergy through the miniband structure.

The large oscillations below the plateau occur while
the average conductance changes relatively fast from
pinchoff to the first plateau. Here the transmission
through each barrier changes from 0 (large band gap) to
nearly 1 (small band gap). In this case the reduction of
the band gap moves the Fermi energy through a mini-
band. A maximum in the conductance occurs when the
Fermi energy coincides with the energy of a discrete
state within the miniband.

The finite crystal allows a simple counting comparison
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FIG. 2. Conductance as a function of gate voltage 2 V> on
the second gate at 2 T and V,, =—0.45 V on the first gate.
The inset schematically shows the gate geometry; the dashed
lines indicate the depletion regions in the 2DEG. The upper
depletion region is moved towards the fingers when V> is made
more negative.
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between the number of oscillations in a band and the
number of quantum dots. For the curves of V,; = —0.45
and —0.48 V the number of oscillations is fifteen, in ac-
cordance with the number of dots. However, the curve
of ¥, =—0.46 V shows sixteen (reproducible) oscilla-
tions and in the curve of ¥ = —0.47 V the gap marked
by the plus sign is not seen. The disappearance of the
gap is presumably caused by irregularities, which intro-
duces mixing between minibands. The sixteen oscilla-
tions in ¥, = —0.46 V cannot be understood from the
number of quantum dots, not even when the dots are
considered to be unequal. An additional scatterer some-
where in the channel may be the cause for this extra os-
ciliation. The smaller oscillations on the left of the aster-
isk in Fig. 1 indicate another discrete miniband, al-
though less regular. The influence of irregularities on
the miniband structure will be discussed further below.
The oscillations reproduce if the sample is kept cold
(<4 K), but not after warming up to room temperature.
So far the oscillations have only been studied in one
sixteen-finger sample. In a one-finger sample of identical
design, we found that the conductance versus V,, shows
quantized plateaus at zero magnetic field, which shows
that a single finger acts as a quantum point contact.'' In
a two-finger sample we have observed structure at 2 T
with a period of AV,,=25 mV. This period corresponds
to the energy difference between consecutive 0D states in
the single quantum dot and is approximately the same,
as one would expect, as the gate-voltage difference be-
tween the two downward peaks in Fig. 2. From these
different finger samples we can conclude that the addi-
tional smaller oscillations in Figs. 1 and 2 indeed origi-
nate from the coupling between the quantum dots.

To substantiate the interpretation of minibands we
have calculated the transmission probability Tn =ty13
through a 1D chain of N symmetric barriers. The calcu-
lation is a numerical solution of a recursive formula for
the complex transmission amplitude ¢y, expressed in the
complex amplitudes ¢ for transmission and r for
reflection through a single barrier and the phase 6 ac-
quired by an electron after one revolution in a single
quantum dot:

o=l 0

1 “‘I'I‘,w—]é"e

Current conservation yields the additional relations
tn/tR = —rn/r¥ and tat¥+ryr¥ =1. For N=2, Eq. (1)
describes the transmission through OD states in a single
quantum dot.'%'* A 0D state in a single quantum dot is
defined by the condition that the phase 8 equals an in-
teger times 2z. At zero magnetic field this condition is
fulfilled when an integer times half the Fermi wave-
length exactly fits between the two barriers.® At a high
magnetic field when the cyclotron radius is small com-
pared to the dot dimensions, the current-carrying elec-
trons are confined in an edge channel located at the

boundary of the dot. Here the phase 6 is given by 2
times the number of flux quanta ¢/¢o enclosed by this
edge channel.'®'* At intermediate values for the mag-
netic field, the phase will depend in a complicated way
on the electron trajectories within the confining poten-
tial, which in our case is not exactly known. Therefore
we have calculated the transmission T as a function of
a generalized phase 6. Some results of this model for
N =16 barriers are shown in Fig. 3; an extensive descrip-
tion will be published elsewhere.'> To simulate our con-
ductance measurements, with G =T e %/h, we simultane-
ously varied the phase 8 and the transmission amplitude
t. In this way the effect of the gate voltage on the
confining potential and on the coupling between adjacent
dots is simulated. The transmission Ty is plotted as a
function of phase, and the simultaneously varying
transmission probability 1z* of a single barrier is the
lowest curve shown in Fig. 3. The two calculated
transmissions illustrate the effect of one deviating bar-
rier. For the middle curve in Fig. 3 all amplitudes ¢ and
phases 6 are taken equal for the fifteen quantum dots,
while for the upper curve one barrier transmission ampli-
tude in the middle of the crystal deviates by a factor of
0.97.

The calculation illustrates the effect of the formation
of a band structure on the conductance, with the deeper
downward peaks associated with the gaps and the fifteen
smaller oscillations with the discrete minibands. With
one deviating barrier in the middle of the crystal, the cal-
culated smaller oscillations group together in pairs of
two, very similar to the pattern seen in the experimental
curves of Vg1 =—0.46 and —0.47 V in Fig. 1. Further
calculations show that if the amount of disorder is in-

TRANSMISSION Tn
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FIG. 3. Calculations from Eq. (1) of the transmission T as
a function of phase 6 of a 1D chain of N =16 barriers. The
lowest curve shows the simultaneously varying transmission
probability #z* through a single barrier. In the middle curve
all barriers are taken equal, while in the upper curve a small
amount of disorder is included by one deviating barrier.
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creased (accomplished by variations in the individual ¢’s
and 6's), the oscillations become more irregular and
eventually the gaps disappear.'® From the above simula-
tions we can conclude that the recursive Eq. (1) demon-
strates the origin of the experimental results in the for-
mation of a miniband structure in our 1D crystal.

A striking difference with the experiment is the deep
gaps appearing in the calculations. We note, however,
that for an asymmetric barrier in a magnetic field, both
amplitudes ¢ and r are unequal to the amplitudes ¢’ and
r' for a wave in the opposite direction. Incorporating this
in the calculation we found that the gaps become less
deep compared to the amplitude of the smaller oscilla-
tions. Another reason for the difference in experimental
and theoretical gaps may be related to screening effects
in the real device. Because of the absence of states in the
gaps, it may be possible that the Fermi energy does not
change continuously with the gate voltage, but jumps
from the top of a miniband to the bottom of the next
one. This may result in observing smaller gaps. Howev-
er, screening effects are difficult to estimate in small
low-electron-density samples, and are not taken into ac-
count in our simple model.

In summary, the transport properties of the 1D crystal
reflect the formation of a miniband structure of which
the discreteness is clearly observable. In contrast to the
vertically grown superlattices, the electrostatic definition
of the crystal by means of a split gate allowed us to tune
the Fermi energy through the miniband structure. In
this way some basic solid-state properties are exhibited
in the conductance, for instance, electrical insulation or
conduction of the 1D crystal depending on the location
of the Fermi energy in a gap or a band, respectively. A
simple 1D model can account for the observed features
in the conductance and illustrates the formation of a
band structure in the solid state in terms of resonant
transmission.
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