
VOLUME 65, NUMBER 27 PHYSICAL REVIEW LETTERS 31 DECEMBER 1990

Rigidity Loss Transition in a Disordered 2D Froth
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Disordered two-dimensional soap froth has been simulated, with a gas fraction p less than unity.
Upon decreasing p, it is found that the system loses its rigidity at le, =0.84. This value is identified with
the dense random packing of hard disks. Results are presented for the variation of yield stress and shear
modulus, the latter being tentatively related to elastic-network theory.

PACS numbers: 82.70.Rr, 68.90.+g

In this Letter we present the first results of simulations
of the two-dimensional soap froth with gas fraction p less
than unity. We explore the nature of the transition by
which this system loses its rigidity as p is decreased. The
question is simply: How does foam (which acts as an
elastic solid under low stress) fall apart, as it must, if we

steadily increase the liquid fraction?
A remarkably simple scenario emerges for this transi-

tion, linking it with two classic computational
problems —random hard-disk packings and the rigidity
of random elastic networks.

Until now, theories of disordered 2D froth structure
and properties had the limited objective of understanding
the case defined by p =1, in which the cell walls (curved
lines) meet at point vertices, rather than joining liquid
Plateau borders, which are the consequence of p & l.
Very recently, various discrepancies' in the comparison
of experimental results with theoretical expectations
have forced these Plateau borders upon our attention,
and it has been realized that even borders of quite mod-
est size can be significant in their eA'ects. ' The
theorems and procedures which we used to demonstrate
this are of limited applicability, being confined to small,
three-sided Plateau borders. If p is decreased to values
considerably less than unity, we encounter borders with
ever greater numbers of sides. These can only be ana-
lyzed by recourse to a fresh approach to the simulation
problem, which takes account of them. We have
developed the necessary program which can equilibrate
large samples in a manner broadly similar to that of the
previous work.

With Plateau borders incorporated, the equilibrium
conditions are as follows. The cell walls (which are still
not given any finite width) join the Plateau borders
smoothly; the two border edges have a common tangent
with the adjoining cell wall. The border edges them-
selves have radii of curvature r which satisfy hp =or
where a is surface tension, while the cell walls satisfy
Ap=2or ' as before. The cell areas are fixed and
hence the cell pressures are variables, but the pressure is

put equal to a common value throughout the Plateau
borders, which is adjusted to achieve a specified p. Both
liquid and gas are treated as incompressible.

The technical details of the program cannot be de-
tailed here: Its success is self-evident from Fig. 1. This
sample of 100 cells was created by the Voronoi pro-
cedure, with periodic boundary conditions.

A sequence of structures was generated by reducing p
by intervals of 0.01, equilibrating the structure for each
successive value. The starting structure at p=l was
characterized by p2=1.44 and p2 =0.15. These are re-
spectively the second moment of the distribution of num-
bers of cell sides and that of cell area normalized by
division by the square root of mean cell area. The de-
gree of disorder represented by this choice of structure is

roughly typical of a mature 2D froth.
Such a simulation allows us to address for the first

time the loss of rigidity which must occur as p is de-
creased, since the system must eventually consist of iso-
lated bubbles.

How and when does this happen? Only an ordered
hexagonal array of cells has previously been studied. In
this case, there is a sudden collapse at &=0.9069, with
no change in the shear elastic modulus up to that point.
This has very limited bearing on the behavior of the typi-
cal disordered froth.

In various preliminary runs, we found it impossible to
equilibrate structures below &=0.84 and percolation of
the Plateau borders was evident as the cause. Hence we

estimate this to be the critical value p, for the disordered
system. This critical density is indeed distinct from the
value for the ordered froth, but it has a simple, and relat-
ed, significance: it is the packing density for random
hard disks. As Bideau and Troadec have shown, there
is a wide range of random mixtures of hard disks for
which the packing fraction 0.84 0. 1 is obtained.

Such random hard-disk packings have coordination
number close to Z=4. Bideau and Troadec observed a
slightly lower figure but Weaire has argued that this is

largely attributable to the eAects of rigid wall boundary
conditions. The identification of the limiting 2D froth
with the dense random hard-disk packing is reinforced
by the observation that the value Z=4 is indeed ap-
proached as p p, , as shown in Fig. 2. Note that Z is
defined as the average number of neighbors with which a
cell makes contact. As triangular Plateau borders

1990 The American Physical Society



VOLUME 65, NUMBER 27 PHYSICAL REVIEW LETTERS 31 DECEMBER 1990

0.20-

0.10

0 00

/ Xl
= 1.0

1.0

0. 5

0.0
0.00

I

0.05

0

I

0.10

I

I

I

i

I

j

I

I

I

I

I

I

'I

1

1

1

I

I

1

I

I

0 .15
1

0. 20

FIG. 2. Calculated variation of structural and mechanical
parameters with gas fraction p, for the structure shown in Fig.
1. From the top: energy F.*, coordination number Z, yield

stress r*.„and shear modulus C*, as defined in the text.

@=o.as

FIG. l. A sequence of disordered simulated froth structures,
with decreasing gas fraction p.

coalesce to form many-sided borders, Z drops from its
initial value Z =6, which is fixed by Euler s theorem.

Figure 2 also shows the variation of energy, shear
modulus, and yield stress. ' The dimensionless quanti-
ties shown are defined in terms of the mean gas cell area
A, gas fraction p, and surface-tension parameter (energy
per unit-cell edge length) a by

Ee =+ /2y I IE

The shear modulus and yield stress are derived from cal-
culations in which an increasing extensional shear is im-

posed by a change of boundary conditions. ' For these
quantities there are some difficulties in following the
variation into the critical region. In part this is due to
the small size of our sample: We intend to undertake
studies of much larger ones in the future.

Bearing in mind the variation of Z, this transition is

highly reminiscent of that recently investigated for elas-
tic networks, in which elastic springs are randomly
severed until there is a loss of rigidity (rigidity percola-
tion). ' ' Loosely speaking, the contacts between the disks
act as elastic springs, at least close to p, . These springs
act only under compression so that they are eAectively
severed as a contact is lost, upon decreasing p. Note that
the critical value Z=4 recurs in the elastic-network
model, as the value at which the number of constraints
defined by zero deformation of the springs equals the

3450



VOLUME 65, NUMBER 27 PHYSICAL REVIEW LETTERS 31 DECEMBER 1990

number of degrees of freedom. This strongly suggests
that the prediction of the effective-medium theory, ''

which is also successful for elastic networks, that the
shear constant goes to zero linearly, should describe this
system well in the critical region (although not necessari-
ly at the transition itself).

The yield stress' r,. „shows a dramatic initial drop
with decreasing p, reinforcing our assertion that Plateau
border effects can be very large, even when the borders
themselves are small. Indeed a simple analysis which
treats the elastic modulus as constant and estimates the
change in yield strain and hence stress, due to Plateau
borders, suggests that the derivative of i „, „ is infinite at
|t = l.

Note that although we have used the word percolation
from time to time, the rigidity loss transition is not pro-
voked by the growth of a percolating Plateau border, as
one might suspect. The analogy with elastic-network
models is particularly valuable in understanding this.
One does not have to cut such a network in two in order
to cause it to lose its rigidity.

Such results present a challenge to further experimen-
tation and perhaps an opportunity to review some exist-
ing data to determine, for example, Z as a function of p.
Recent investigations include not only the prototypical
2D soap froth, ' but also analogous structures in lipid
monolayers. ' ' Photographs of the latter system' '
provide a particularly interesting comparison with our
Fig. 1. It may even be possible to perform two-
dimensional rheological measurements in this case, an
objective which seems unattainable for the soap froth it-
self.

In conclusion, we have established the broad features
of this type of transition for the first time. Its intrinsic in-
terest is reinforced by its relation to hard-disk packings
and elastic networks. Ultimately it can offer us insights
into the practical problem of three-dimensional foam
rheology. Indeed, the entire scenario which we have es-
tablished should carry over to the three-dimensional
case, with minor modifications, such as critical coordina-
tion number Z =6.

Conversations and correspondence with A. Kraynik
were helpful in delineating this problem. Research was
funded by Eolas (Irish Science and Technology Agency).
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