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Theory of Solvation-Induced Reentrant Phase Separation in Polymer Solutions
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A simple model of solvation is introduced to describe lower critical solution points in polymer solu-

tions. Our theory predicts that physical bond formation between polymer segments and solvents can be a
major cause of miscibility gaps showing a closed-loop or hourglass shape. Relative positions of upper
and lower critical solution points are examined for the various molecular weights of the polymer. The
result is compared with the observed phase diagram of polyethylene glycol in water.

PACS numbers: 64.70.—p, 64.75.+g, 81.30.Dz

In certain binary mixtures, lower critical solution
points (LCST) are often observed. Typical examples are
nicotine in water, ' polyethylene glycol in water, and
ethylene-vinyl acetate (EVA) blends with chlorinated
polyethylene (CPE). ' There is evidence that these solu-
tions contain a complex formed by molecules of diferent
species, and that the formation of the complex is caused

by a hydrogen bond. The microscopical explanations
of these properties in small molecules have been reviewed

by Walker and Vause. Recent experimental and
theoretical studies have also suggested that an interac-
tion of the hydrogen-bonding type prevails in EVA-CPE
blends.

In this paper we examine a possible mechanism for the
appearance of LCST in polymer solutions from a molec-
ular point of view. The current understanding of the
phase behavior in polymer solutions is based on the co-
occurrence of solvation (hydration) and phase separation
on the temperature-concentration plane. Our theory pre-
dicts that a physical bond formation between polymer
segments and solvents causes peculiar types of phase sep-
aration, such as a closed-loop shape and an hourglass
shape. The result is compared with the observed phase
diagram for polyethylene glycol in water.

When molecules form hydrogen bonds, the solution
contains polydisperse molecular aggregates. It has been
reported that the polydispersity is an important factor in

associating liquids, including micellar solutions ' and
physical gels. ' ' The theoretical understanding of these
solutions must incorporate the size distributions of such
aggregates, strongly dependent on concentration and
temperature. We consider here the polydisperse
polymer-solvent complexes formed by hydrogen bonds.

Consider a binary mixture of polymer and solvent.
Each polymer chain is assumed to carry f identical func-
tional groups which do not interact with each other but
are capable of forming physical bonds with the solvent
molecules by pairwise association. The bonding energy
considered here is on the order of the thermal energy, so
that bonding-unbonding equilibrium is easily established

where po is the volume fraction of the free solvent mole-
cules, p~ is that of the unbonded polymer,
(m =1,2, . . . ,f) is that of the m clusters, p—= I/ktt T, N,
is the total number of lattice cells in the system, n is the
number of segments on a polymer, and g is the solvent-
solute interaction parameter. The total volume fraction
p of the polymer is given by p =P[n/(n+m)]p„, +~. For
binary systems, we have po+Ptt„, + ~

= I by definition.
In thermal equilibrium, each molecule is in chemical

equilibrium through bonding and unbonding processes.
The multiple chemical equilibria conditions are given by

p», +~ =p~+mpo (m =0, 1,2, . . . ,f), (2)
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by thermal activation. In thermal equilibrium, each
polymer chain is associated with a certain number of sol-
vent molecules. If m groups among f on a chain are
bonded with the solvents, we call them rn cluster in the
following. We include a pure chain in the case of m =0.
To derive the population of such clusters, we now consid-
er the thermodynamics of the system.

The free energy of our system can be constructed by
the sum of the two terms, F=F„,.„+hF, „, each required
in two diA'erent steps starting from the reference state
where pure solvent and pure polymer molecules are
prepared separately. The first term F„„. is the free ener-

gy of the quasireference state where the clusters and the
unbonded free solvents are prepared separately. It is
written as F„„. Nopo+QN„+~p, +~ in terms of the
chemical potential p,„~~ of a single isolated rn cluster,
where A'„, +1 is the number of m clusters and No the un-
bonded free solvent molecules. The second term hF, „
describes the free-energy change required in the process
of mixing the thus constructed clusters with the free sol-
vents. According to the lattice theory of Flory-Hug-
gins,

''-the free energy AF,„ is given by

f
plsF, „=N, polnttto+ g In&„, + ~+gp(1 —p)

py&~0 pl +m
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where pp =SF/&No is the chemical potential of the free
solvent, p„,+~ =SF/8N„, +~ is that of the m cluster, and

p i
=8F/BN t is that of the unbonded polymer. Explicitly

we have

By the normalization condition together with multiple
equilibria, the volume fraction pp of the free solvents is
given as a function of p and k(T):

y, = [X —
1
—(1+P)Xy+ iD(y) ]//2X,

Ppo =Ppo+ !neo+1 eo+ +XI
n

(3a) where P:f/—n and

D(y) —= [X —
1
—(1+P)ky]'-+41(1 —y) .

Pp, »+~ =Pp,„+~+1np„, +~+1 —(n+m) pp+-
n

+ng (1 —y)'-+ —y-'
n

(3b)

Substituting Eq. (3) into Eq. (2) we have p„, + ~

=K„,p~po" for the volume fraction of m clusters, where

the association constant K„, is expressed as K„,
=exp(m —5„,) in terms of the free-energy diff'erence

which is defined by 5„,=P(p,»+ ~

—p ~
mp—p)

Splitting the free-energy change h,„, into the entropy hS
and the enthalpy hH terms, we have 6„,=P(AH TBS). —
The entropy change dS consists of two parts:
AS =hS„+hSd;, . The combinatorial entropy hS„ is

given by AS„=kaln8'„„where W„, is the number of
ways to select m functional groups out of f on a chain,
and is given by the binomial coefficient. We then have

h,S„=kg ln
m!(f—m)!

(4)

The configurational entropy change hSd;, for an m-

cluster formation is given by ASd, , =S(n, m) —S(n, 0)
—mS(1,0), where S(n, m) is the configurational entro-

py of a single m cluster whose segment number is n+m.
By the use of "entropy of disorientation, "' S(n, m) is

given by

(n+m)z(z —1)"+"'
Sn, m = an

cr exp(n +m —1)
n& (5)

where z is the coordination number of a quasilattice, ~ is

the symmetry number of the cluster, and w is a constant

giving the statistical weight whose logarithm is the local
entropy change for a bond formation. Using Eq. (5),
ASd;, is expressed as

When P =0, we have po =1 —P.
In the following we consider the equilibrium solution

properties. It is convenient to consider the free energy
per lattice cell: f„=F/N-,

The spinodal line is obtained' from 8 f„/8& =0, or
equivalently from Bpo/8& =0. This leads to

1 Po 1 dd—o+
4'oP

—2g =0.

The condition for the two phases to be in thermal
equilibrium is given by pp(p') =pp(p") and p», +~(!!~')
=p», +t(P") for m=0, 1,2, . . . ,f. Because of the multi-

ple equilibria conditions p„,+ ]
=p] +mpo, however, the

coexistence curves (binodals) of the phase equilibrium
are derived by the coupled equations pp(P') =pp(p") and

p ~
(p') =p ~ (p"), where p' and p" are the polymer concen-

trations in the higher and the lower concentration
phases, respectively.

The osmotic pressure ir is related to the solvent's
chemical potential by zPa'= —Popo, ~here App—=pp—pp. In the dilute regime we can expand pp in powers
of the concentration p. Substitution of it into App yields
the dimensionless second virial coefficient in a simple
form:

.5

g oocl

W, = —, —[g —q(1+q/2)},

where rl=W/(A. +1). The parameter g is always positive
and increases with temperature decrease. ' As X(T) is

always positive, the eff'ect of solvation reduces the net in-

teraction between the two components. The number-

n+m
1]t

n
g (T)»l

m!(f—m)!

where X(T) is defined by X(T)=Xo exp(Phe).

where Xo =—cr(z —1) w/ze is a parameter related to the
local entropy change for a single bond formation. The
energy change hH is given by hH = —mme, where h~
( & 0) is the energy required for a bond formation. Sub-
stituting the above results into A„„we find the associa-
tion constant K„, is given by

A2

- 5
-2

F|G. I. Second virial coeScient 8 against the reduced

temperature r. The entropy parameter ko is varied from curve

to curve.
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average cluster size (m), which also equals the average
number of solvent molecules bonded on the polymer, is

given by (m) =PmN„, +~/PN„, +~. Hence we have (m)
=fx/(1+x), where x is defined as x=k(lto.

For the numerical calculation we introduce the re-
duced temperature r by the definition r =—1

—8o/T,
where 8o is the unperturbed theta temperature which
satisfies an equation g(8o) = —. . In terms of r, the g pa-

rameter and k(r) can be expressed as g= —,
' —@~r and

k(r) =Apexp[y(1 —r)], respectively, where y=ha/ktt8p.
We then have five parameters characterizing the system:
functionality f of a polymer, number n of the statistical
units on a polymer chain, entropy parameter Xo for a sin-
gle bond formation, dimensionless bonding energy y, and
unperturbed polymer-solvent interaction y~.

Figure 1 shows the second virial coefficient A2 plotted
against the reduced temperature r. We have fixed P= I,
y~ =I, and y=3.5 for a typical example. The entropy
parameter Xo is varied from curve to curve. The temper-
ature for which A2 0 is the 8 temperature. The region
where Aq (0 corresponds to a poor solvent condition and
the region where A2& 0 to a good solvent condition.
The second virial coefficient exhibits a maximum and a
minimum as a function of the temperature. Since the
curve for ko=0.003 has three 8 temperatures, a closed-
loop coexistence curve appears in the poor solvent region
at the higher-temperature side, as shown in Fig. 2(b).

Figure 2 shows the phase diagrams on the tem-
perature-concentration plane. The entropy parameter A, o

is changed from Fig. 2(a) to Fig. 2(c). The segment
number n is varied from curve to curve. The critical
solution points are indicated by the open circles. The
solid (dashed) curves correspond to the binodal (spino-
dal) curves. The temperature of the maximum of each
coexistence curve corresponds to the upper critical solu-
tion temperature (UCST) and the temperature of it is
minimum to the lower critical solution temperature
(LCST). As shown in Fig. 2(a) we have, for lower
molecular weights, closed-loop coexistence curves (CLC)
showing a UCST and a LCST, and the lower coexistence
curves showing a UCST. For larger values of the seg-
ment number n, we have an hourglass shape of the phase
diagram such as observed for polyethylene glycol in t-
butyl acetate. ' Figure 2(b) shows the phase diagram for
ko=0.003. As the segment number n increases, the
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FIG. 2. Phase diagrams on the temperature-concentration
plane. The solid (dashed) curves correspond to the binodal
(spinodal) curves. See text for details.

FIG. 3. Comparison of the theoretical calculation with the
observed phase diagram for polyethylene glycol (PEO) in wa-
ter.
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mation between the ether oxygen molecules of PEO and
water molecules causes the LCST. When temperature is
increased, the hydrogen bonds break and water becomes
a poorer solvent for the polymer. ~

In conclusion, a simple theory presented here can de-
scribe the lower critical solution point as the results of
the co-occurrence of solvation and phase separation. The
mixing entropy produced by solvation is the main cause
of the LCST. The concept of solvation (hydration) is of
central importance in other aqueous polymer solutions,
and also in nonionic surfactants and nonionic gels' in

water.

FIG. 4. Average number (m& of the solvent molecules (wa-
ter) bonded to a polymer chain (PEO) shown against the tem-

perature.

LCST of the CLC is lowered, while the UCST of the
CLC and of the lower coexistence curves are raised. The
hourglass phase diagram, however, does not appear since
we have three e temperatures. The CLC is absent for
n=100. As the entropy parameter Xo increases further,
the CLC disappears as shown in Fig. 2(c), and we have
the coexistence curves with the UCST only. These phase
diagrams appear as the results of the co-occurrence of
solvation and phase separation.

Figure 3 shows the comparison of the theoretical cal-
culation with the observed phase diagram for poly-
ethylene glycol (PEO) in water. The number-average
molecular weights of the PEO were estimated to be
2170-10X10: open circles, 2180; solid circles, 2270;
open triangles, 2290; solid triangles, 8000; vertical half-
filled circles, 14.4 x 10; horizontal half-filled circles,
21.2&10; open squares, 1020X10'. The solid curves
show the calculated binodals. The segment number n in

our numerical calculation is varied from curve to curve.
The following values of the parameters are used to fit the
experimental data: tit~ =I, co=730 K, y=6, P=1, and
ko= 1.66X10 '. The fit of theoretical curves to the ex-
perimental data is very good.

Figure 4 shows the average solvation number (m)
versus the temperature. The volume fraction of PEO is
varied from curve to curve. Near the LCST, the value of
(m) rapidly decreases with increasing temperature.
These analyses demonstrate that the hydrogen bond for-
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