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Fluid Interface Tensions near Critical End Points
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Novel local free-energy functionals are presented, generalizing the de Gennes-Fisher critical-point an-
satz, for obtaining fluid interface tensions near critical end points and critical wall tensions. Nonclassical
exponents, proper analyticity in T, etc. , are embodied. New "interpolated linear-model" and "trig-
onometric" parametric equations of state then lead to universal ratio estimates K+/K —= —0.83,
(K++K )/K=0. 12, for the amplitudes K of the critical and K~ of the noncritical/wall tensions.

P =(K++K)/K and Q =K+/K —' (3)

PACS numbers: 64.60.Fr, 05.70.Jk, 68.35.Rh, 82.65.Dp

It has been recently emphasized' that new critical
singularities appear at a critical end point beyond those
observable at a normal bulk critical point. Furthermore,
these singularities should exhibit various universal fea-
tures that are susceptible to experimental study. ' An
important example of a nonsymmetric" critical end
point arises in binary fluid mixtures of small mole-
cules. ' A mixture of components, say 8 and C, often
separates into a 8-rich liquid phase, P, which coexists
with a C-rich liquid phase, y. In a sealed container both
may coexist with a dilute vapor phase, a. At the critical
end point, T =T„the spectator phase, a, remains non-
critical, with a finite correlation length, while phases P
and y become critical; above T, these merge into a single
homogeneous liquid phase, Py. Of particular interest'
are the various interfacial tensions observable near T, .
Our purpose here is to outline new theoretical develop-
ments which enable one to estimate the singularities in

these tensions and various novel universal amplitude ra-
tios, and to report the first numerical results from such
calculations. The theory significantly extends earlier
work pertaining to order-parameter profiles at criticali-
ty in semi-infinite and bounded systems and also de-
scribes criticality of wall free energies at the so-called
extraordinary surface transition' (which, however, in

the laboratory is more normal than the "ordinary" tran-
sition).

The interfacial tensions of concern are Z, ~p, (T), be-
tween phases a and Py above T„and Z, ~tt(T) and

Z&~, (T) below T, . Antonow's rule will apply for the
systems of interest, so, using P to label the "middle"
phase, the remaining tension satisfies Z, ~, Z ~p+Zp~, .
Now, when t= (T—T, )/T, 0 —,sc—aling gives

~p)r(T) =Kltl", p=2 —a —v=2P+y —v,

where a, P, y, and v denote the standard bulk critical ex-
ponents. Following paper I, ' we also have

».~t, (T), &&.lt (T) =K ~
I
t I
",

as t 0+, where the h,X denote deviations from
Zp(T) & 0, a suitable background term analytic through
T, . The amplitude ratios

should then be universal and characteristic of a critical
end point. '

Mean-field theory for a single scalar order parameter,
m, which should be valid for dimensions d &4, yields
P = —

—,
' (v 2 —1) and Q = —J2. Note the negative

signs which do not seem in accord with current data for
real systems. The evaluation of P and Q for d=3
(and, to cross-check theory, for continuous d ~ 2) is a
major aim of our work. However, few models exhibiting
critical end points are amenable to exact analysis even

for bulk properties. ' Renormalization-group e=4 —d
expansions are possible in principle, but seem extremely
hard to derive for this problem. Furthermore, reasonable
accuracy for d=3 will require O(e ) if not O(e ) calcu-
lations. ' Accordingly, we have instead explored generali-
zations of the classical square-gradient theory for critical
interfaces by constructing novel local free-energy func-
tionals, 7[m], which, A, embody the correct nonclassical
critical exponents; B, reflect the properly analytic
asymptotically scaled equation of state; C, imply a
correctly decaying order-parameter profile in a semi-
infinite system at criticality; and D, E, . . . , exhibit vari-
ous desirable analytic and asymptotic features detailed
below.

Pioneering work embodying A has been performed by
Widom and co-workers ""but is not adequate for our
purposes. Thus, correction terms in (2) should be of or-
der ItI"+' and ItI"+', where' 8=0.54 for d=3; howev-

er, Ramos-Gomez and Widom obtain, for reasons we

find associated with the failure of B, nonscaling terms
O(ItI') which are surely erroneous and even dominate
the scaling terms (2) when d & 3 —ri.

To construct a suitable 7[m] recall, ' ' first, that a
full description of a critical end point requires a thermo-
dynamic space of three fields, (T,g, h), where g is a
nonordering field, like the pressure, which varies along
the critical line [h =0, T=T, (g)] and carries the system
through the end point at (T„g„0)into the a phase, '

while h is the ordering field conjugate to m so that h =0
specifies the (p+y) coexistence surface and its smooth
extensions into the a and py phases. Let cp(T, g;h)

F/keT be the true red—uced free-energy density with

conjugate N(m;T, g) that is well defined and must be
analytic in T, g, and m within all single-phase regions.
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We follow tradition by assuming, Y, that 4(m) can be

smoothly continued into all "metastable" and "unstable"
two-phase and three-phase regions (but see further
below). Then a plot of

W(m;T, g) =4(m;T, g) —hm N—(T,g;h) ~ 0 (4)

vs m has the familiar single-, double-, or triple-well ap-
pearance ' with minima W=O at m =m~(T, g;h),
&=a,P, y, Py.

On expanding in h, m =m —m~ about any minimum

one has

W(m) = —. g~ Am + —, |.~Am'+ .4 u~hm + .
, (5)

the subscript denoting evaluation at m~ of g (m;
T,g) =ti W/Bm, the local inverse susceptibility, and of
v(m) =ti W/Bm and u(m) =rl W/Bm . One may re-

gard u(m) as a local, field-theoretic "renormalized cou-

pling constant. " We may suppose m =0 on the critical
line and describe the (P, y) coexistence curve by
mp(T, g) =8(g)ltl", where the nonlinear scaling field

satisfies t = t —q(g —g, ) with qT, =(dT, /dg), .

Next, we regard the bulk equilibrium correlation
length, g(m;T, g), as known in each noncritical single-
phase state and as associated with the, E, exponential de-

cay of the order-order correlation function. The single-
phase correlation length varies analytically with m, T,
and g and diverges (only) on the critical line. We fur-
ther suppose, Z, that ( (m)/2g(m) can be continued
smoothly as a positive function into all multiphase re-
gions.

Correct nonclassical exponents, A, are now embodied
in the scaling forms (h =0)

W= lml +'Y-t(y), g /2@= lml "'Pz-t(Y), (6)

9[m(z)] =„dz[4(T,g;h)+A(m, m;T, g, h)],

where + refers to t(0 and y=m/mp(T, g). As indi-

cated, it is crucial to recognize, B, the analyticity of 4
and g. This enforces the asymptotic form

Y~(y)= + Z Y-,.(~lyl) "", (7)
w ~layl
2 —a 1

—a, -p

as y ~, where A + (g) are the specific-heat ampli-
tudes;' Z+ (y) must vary similarly but with no term in

2+. To accommodate the spectator phase properly
(with m, far from m, =0), correction-to-scaling factors
of the form 1+ lm l

i~Y~"(y)+, etc. , must be recog-
nized. However, the quantitative behavior of the correc-
tion scaling functions Y~ (y), etc. , will not aff'ect the
leading end-point singularities.

If z measures distances normal to the mean interfacial
plane(s) the local functional

for an external wall located, say, at z =0, by adding the
usual boundary term fi(mi, hi, T,g), in which hi &0
represents a surface field coupled to mi—=m(z=0). We
consider this in order to test the hypothesis 0, intro-
duced in paper I, which asserts that the spectator phase
a can be replaced, as t 0, by a rigid wall, co. If 0 is

valid, one can' deduce the exact behavior of the ampli-
tude ratios P(d) and Q(d) at and near d=2; in addition,
the task of e expansion is greatly eased. Furthermore, it
is of independent interest to treat various open wall-

criticality problems: see, e.g. , Refs. 4-7, 13.
We now introduce postulates for A(m, m) which, we

believe, represent significant improvements over previous
proposals. " To start, recall the de Gennes-Fisher
(dGF) ansatz which applied only at criticality (h=0,
t =0) where W(m) = W, lml +'. This featured a local-
ly varying correlation length ([m(z)] —lml 't~ and a
new exponent 2 —g; it can be written

A(m, m) =W[1+JQ(Am)], 0( —x) =&(x),

with A(m) =g(m)/m, so that x =Am is scale free, Q(x)
=lxl ", and J=kp, constant. ' Note that for classical
exponents, b'=3, P = v= —. , and rt =0, the dGF form
reduces to' A = W, m +k im, which is mean-field
theory. More generally, it meets the desiderata A and B
and, in a semi-infinite (critical) system, it yields the de-
cay C: m, (z) —z @'. Furthermore, for a critical slab,
bounded between two parallel walls at separation L, it
predicts, ' D, a correction factor 1+k2(z/L) +
as L ~, where d* =(2 —a)/v (independently of ri);
this result is not a direct consequence of scaling. Howev-

er, it has been verified (along with other predictions) by
exact d = 2 Isin calculations, ' "'

by renormalization-
group analysis' (d=4 —e), and by conformal covari-
ance theory' ' (general d).

In a finite critical slab with + —(or ++) boundary
conditions the critical profile exhibits a zero (or a
minimum)

m, (z) =M, (z —z ) '[I+M (z — ) '+ ], (10)

which, on general grounds, should be analytic, so that,
F(i), X|=1 for a zero and X|=0 for a minimum, with,

(ii), k2 =2, k4=4, . . . . Now F(i) is satisfied only if'

rt =2g/(d*+ rt), (11)
which we will assume henceforth. Note, as previously
unremarked, that A then reduces simply to'
W, lml +'+k3lml'- ". However, the dGF ansatz does
not (in general)" satisfy F(ii) which is a defect [even

though Xi =0 leads to (A, 2
—2)/Xq =g/d* which is small].

To extend the dGF ansatz away from criticality it is
natural to simply replace W and g by their noncritical
forms [as in (6)]. But one then finds that condition E,
exponential decay, is violated! Instead, we introduce the
"EdGF ansatz" via

with m=dm/dz and A(m, 0) =W(m), reproduces the
correct bulk equation of state. One may, further, allow J=1, A (m;T, g, h) =g (m)/2g(m)W(m), (12)
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where T, g, and h are to be understood on the right-hand
side, and we also require

Q(1) = I with Q(x) =xdQ/dx —Q(x), (i3)

Q(x) =Gp+G x' "(1+j ix '+j 2x '+. . . ) (i4)

as x ~, where r =2P/(P+ v). In addition, one should

demand, in accord with standard phenomenology, that,
G, away from criticality A(m, m) should have an expan-
sion in powers of m . Accordingly we suppose that

Q(x) =x +G2x +G4x +, as x 0. (is)

The resulting EdGF functional satisfies all of A to G.
Clearly, the choice of Q(x) satisfying (13)-(15) requires
further discussion. " Remarkably, however, for an

infinite or semi-infinite system, as needed for the end-

point and wall problems, the wall/interfacial free energy
is independent of the details of 9, being'

t m~
dm W(m)A(m)+f (im~),Z/k8 T =9+

g m~

where m~=m(z ~) & mv=m~ if there is a wall; oth-
erwise f ~

=0 and mv =m(z —~). The constant
Q~= I+9(1) cancels out of the ratios P and Q. Furth-
ermore, the requirement of, H, thermodynamic con-
sistency, with fp [m(z) —m~]dz = —BZ/Bh, requires,
for the EdGF ansatz, the extra condition Q(1) =1 so
that Q+ =2.

Now, on the basis of this EdGF functional we have (i)
verified the forms (1) and (2) with the expected cor-
rections —because of (7), Ramos-Gomez and Widom's
anomalous ~t~" term does not arise; (ii) established the
wall-equivalence hypothesis, 0, rather generally —this
reinforces the discussions in paper I; (iii) shown that the
extra term Kt t" ln

~
t

~ appears in (2) whenever p is an

integer —this is confirmed by exact results for d=2 Ising
models;' and (iv) estimated P(d) and Q(d) numerically,
as described below.

Although not encountered in the wall or end-point
problems, a defect of the EdGF ansatz appears under
+ —boundary conditions in a noncritical, single-phase
slab: A zero of Am(z) is not perfectly represented. Be-
cause of the factor W in (12), the analog of X~ in (10) is

1
—ri/(d*+ rt) rather than precisely unity.
The following "generalized de Gennes-Fisher postu-

late" still satisfies A-H but is free of this blemish, gen-
erating, 9, analytic profiles m(z;T, g, h;L) in all noncriti-
cal regimes. To specify this GdGF ansatz, recall the "re-
normalized coupling constant" u(m;T, g, h) introduced
via (5), drop (13), and replace (12) by

J(m) = I/u(m)g-'(m) W(m), A'(m) = —, ug&-',

while adding a term G&ln~x~ to (14) with G&=Gp+(8
—1)(8 —2)/B(6+ 1). A novel feature is that when
u 0 the theory reduces to the Gaussian form in accord

with renormalization-group precepts. The profile and
interfacial/wall free energy are again given by quadra-
tures, over g(m), u(m), g(m), and W(m), but the in-
verse of Q(x) now enters explicitly. One may devise'
representations satisfying (14) and (15), but we have
not, as yet, explored the GdGF ansatz quantitatively.

Of course, neither this nor the EdGF ansatz allow ex-
plicitly for capillary waves on a free interface which
enter for d ~ 3 and must affect the tails of the profile
m(z); and both entail the extensions, Y and Z, into the
multiphase regions which probably have no strict
statistical-mechanical meaning. It seems possible, never-

theless, that local formulations such as these, which em-

body many correct features, may, when judiciously fitted
to exact results near d=2 and 4, yield reliable estimates
for surface tensions and for constrained interface prob-
lems. To decide that issue requires quantitative studies
to which we now turn.

For numerical purposes all exponents may be regarded
as accurately known for d ~ 2. To ensure B a paramet
ric representation of the scaling functions Y+ and Z+ is

optimal: One introduces "polar" coordinates (r, 8) cen-
tered on the critical point (t, h, m) =(0,0,0) and writes
the equation of state as'

t =rk(0), h =r~ l(8), m =r~m(8) .

Representations of g(m) and u(m) follow directly;
W(m) can be obtained by a quadrature. The Schofield-
Litster-Ho linear model' sets m =rnp8, l =lp8(1 —8 ),
and k =1 b8; it p—roves exact to O(e ) and, with
modern amplitude estimates, ' works reasonably (in
single-phase regions) even for d=3. Nevertheless, it
does fail at O(e ) and current data warrant an improved
form. For Z~, series data' for d=3 and an O(e) cal-
culation provide an adequate first parametric represen-
tation.

However, the two-phase region, needed to compute K
in (1), requires special consideration since analytic con-
tinuation of linear-model (m, h) isotherms always fails
inside the coexistence curve; usually, h becomes complex
for ~m~ & m* & mp. To sidestep this, we have (a) ex-
plored some conceptually straightforward but somewhat
ad hoc, polynomially interpolated linear models: We let
8 (~0~ ~ 1) describe the interior of the coexistence curve
where, by Y, we expect van der Waals "loops." Then we
choose low-order polynomials k (8),m (0), continuous
with k(8) and m(8) at 8=8=+ 1. Finally, l(8) is an
odd polynomial chosen so that %=1,2, . . . derivatives of
the equation of state are continuous through the phase
boundary. R=duction to mean-field theory (for all b)
whenever P = —,',6=3 is embodied. '-' Beyond the choice
of k, m, and N, no further data are required; however,
the (M ~ 5+1)th derivatives are discontinuous and in-

creasing N must lead to unsatisfactory behavior.
To do better we have devised (b) trigonometric mod-

els in which 8 is periodic. Putting cr(0)—= (2/q)sin —, q0,
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desirable features not realized previously. In combina-
tion with new parametric representations of the critical
equation of state, including the interior of the two-phase
region, these yield quantitative estimates for universal
amplitude ratios describing fluid interfacial tensions near
a critical end point and the extraordinary surface transi-
tion.

We are grateful to B. Widom and J. V. Sengers for
their interest and to the National Science Foundation for
some support (now under Grant No. DMR 90-07811).

-12—
K+
K

one can write

k(8) =1 b a' (8), m(8) = ' rrtpo'(28), (19)

j(8)=I/rn jo[l bcr (8)—+ccr (28)], (20)

with q, c )0. On using classical exponents P = —,', b =3,
this reduces to mean-field theory (for all b, c,q). ' On
letting q 0 the linear model is reproduced (provided
c & —,

'
b ); taking q =o(e), this yields exact results to

O(e ). On the other hand, the extra parameters c and q
allow' more precise representations beyond O(e ) and
for d 2 and 3. Finally, the trigonometric models au-
tomatically generate the desired, analytically continued
van der Waals loops.

Exploration of these parametric representations is un-
derway' but here we report our first calculations of the
end-point amplitude ratios based on (i) the EdGF func-
tional combined with (ii) the linear model, using the
Schofield-Litster-Ho choice ' b = (y —2P)/y(1 —2P),
and (iii) the interpolated linear model with N= 1 and 2.
Exponents versus d are matched to exact d=2 results,
modern d=3 estimates, '

y 1.2395 and v=0.632, and
O(e ) results. Figure 1 shows a plot of P(d) and Q(d);
the dotted curves indicate the leading-order approxi-
mants derived in paper I. Note that P2= P(d =2) = —,

' is-
exact. ' The dashed line depicts the exact gradient'
Q2=(dQ/dp)d-z=tr. Our calculations yield P&=0.14
and Qq =2.77 but such discrepancies are to be expected
since the linear model is known to be poor for d=2.
However, near d =3 where Q = —0.823, the accuracy
should be better. Indeed, for d=3 we have also fitted b
and the correlation-length parameters directly to recent
amplitude estimates' and find Q = —0.83, P =0.12, and
thus expect Fig. 1 to be accurate to within a few percent
for d~ 2.7. Further work' should check this.

In summary, we have presented two novel free-energy
functionals for near-critical fluids which embody many
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FIG. l. Universal amplitude ratios for interfacial tensions
near critical end points vs d: See text for details.

' Present address: Institut fur Festkorperforschung der
KFA, Postfach 1913, D-5170 Julich, Germany.

'M. E. Fisher and P. J. Upton, Phys. Rev. Lett. 65, 2402
(1990),called paper I here.

M. E. Fisher, in Proceedings of the Gibbs Symposiumedit, -

ed by D. G. Caldi and G. D. Mostow (American Mathematical
Society, Providence, 1990), pp. 39-72; Physica (Amsterdam)
163A, 15 (1990).

30ne must distinguish symmetric and nonsymmetric end
points (Ref. 1): Only the latter are considered here.

4See J. S. Rowlinson and B. Widom, Molecular Theory of
Capillarity (Oxford Univ. Press, London, 1982), Secs. 8.3, 9.6,
etc. ; B. Widom, Chem. Soc. Rev. 14, 121 (1985).

sF. Ramos-Gomez and B. Widom, Physica (Amsterdam)
104A, 595 (1980).

M. E. Fisher and P.-G. de Gennes, C. R. Acad. Sci. Paris
287, 207 (1978).

See, e.g. , H. Nakanishi and M. E. Fisher, Phys. Rev. Lett.
49, 1565 (1982).

sWe also use 8=1+y/P, 2 —rt=y/v, and d*=(2 —a)/v
(=d for d ~ 4). The context should obviate confusion between
exponents a, P, and y and the phases so labeled.

N. Nagarajan, W. W. Webb, and B, Widom, J. Chem.
Phys. 77, 5771 (1982),

'oM. C. Barbosa and M. E. Fisher, Phys. Rev. B (to be pub-
lished) study spherical models but these have no proper inter-
faces.

''S. Fisk and B. Widom, J. Chem. Phys. 50, 3219 (1969).
' Here 8 is the leading correction-to-scaling exponent.
'3A. J. Liu and M. E. Fisher, Phys. Rev. A 40, 7202 (1989).
'4We let ko, ki, . . . denote distinct constants.
'5M. E. Fisher and H. Au-Yang, Physica (Amsterdam)

101A, 255 (1980).
'6(a) H. Au-Yang and M. E. Fisher, Phys. Rev. B 21, 3956

(1980); (b) J. Rudnick and D. Jasnow, Phys. Rev. Lett. 49,
1595 (1982); (c) J. L. Cardy, Phys. Rev. Lett. 65, 1443
(1990).

'7P. J. Upton and M. E. Fisher (to be published).
' P. Schofield, J. D. Litster, and J. T. Ho, Phys. Rev. Lett.

23, 1098 (1969); M. E. Fisher, in Critical Phenomena, Inter-
national School of Physics "Enrico Fermi, " Course LI, edited
by M. J. Green (Academic, New York, 1971).

'9A. J. Liu and M. E. Fisher, Physica (Amsterdam) 156A, 35
(1989).

20M. Combescot, M. Droz, and J. M. Kosterlitz, Phys. Rev.
Lett. 33, 705 (1974); Phys. Rev. B 11, 4661 (1975).

2'G. W. Mulholland [Ph.D. thesis, Cornell University, 1973
(unpublished)] has made related studies, unsuccessfu! mainly,
we feel, because such a reduction was not required.


