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Polarization Reversal of Alfven Waves in a Nonaxisymmetric Region of a
Quadrupole-Anchored Tandem Mirror
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Mode-selective excitation of Alfven waves is made by use of azimuthally rotating, radio-frequency an-

tennas in the central cell of the GAMMA 10 tandem mirror. It is found that the wave polarization re-

verses from right handed in the central cell to left handed in the anchor cell and vice versa. Ions in the
anchor cell are significantly heated by a fast wave excited in the central cell and not by a slow wave.

The polarization reversal and the wave-mode-dependent ion heating are interpreted in terms of a linear

mode conversion which is caused by a mode coupling between fast and slow Alfven waves via a spatial
modulation of the magnetic field in the quadrupole-field region.

PACS numbers: 52.55.Jd, 52.40.Db

It is of crucial importance to clarify propagation
characteristics of Alfven waves in an axially nonuniform
and nonaxisymmetric magnetic field for understanding
mechanisms of radio-frequency (RF) wave heating, RF
stabilization of plasmas, ' RF-induced radial transport,
and Alfven wave current drive in magnetic confinement
devices. Fast (compressional) and slow (torsional)
Alfven wave propagation in a single, axisymmetric mir-

ror field has been investigated for various azimuthal
mode numbers, i.e., m=0 mode, m =+1 mode, and
both m =+1 and —

1 modes. ' Little has been done with

regard to the wave-propagation characteristics in a mul-

tiple mirror, especially with noncircular flux-tube cross
section. In the TMX tandem mirror device which has el-

liptical mirror throats, it has been observed that a slow

wave, generated spontaneously by the Alfven ion-

cyclotron instability in the end cell, excites a fast wave in

the central cell.
This Letter presents the first controlled experiments on

a polarization reversal of the Alfven waves propagating
through a multiple mirror with an elliptical fiux tube and

a proposal of a mode conversion model which is based on

mode coupling between fast and slow waves via a spatial
modulation of the magnetic field. The model can inter-

pret consistently the experimental results in GAMMA
10 and possibly those in TMX.

GAMMA 10 is a minimum-8 anchored tandem mir-

ror with outboard plug and thermal barrier in axisym-
metric end mirrors. In Fig. 1(a) the magnetic-field
configuration of GAMMA 10 is shown with the flux den-

sity of 0.405 T at the central-cell midplane. The mirror
ratios at the central, anchor, and plug/barrier cells are
4.9, 3.3, and 6.1, respectively. There are nonaxisym-
metric transition regions at both sides of the quadrupole
anchor cell to recircularize the flux-tube cross section.
An axisymmetric choke coil is provided at each end of
the central cell in order to reduce passing particles to the
nonaxisymmetric region. The lengths of the central cell,
the transition region, and the anchor cell are 5.6, 1.6,

and 1.6 m, respectively. The diameters of the central-
cell vacuum vessel and the plasma limiter are 100 and 36
cm, respectively, at the midplane. The ellipticity of the
cross section in the transition region varies smoothly
from unity to 50 at the maximum and again to unity at
the anchor midplane.

So-called Nagoya type-III (Refs. 10 and 11) and

type-II (double-half-turn) antennas are provided near
both ends of the central solenoid. By controlling the rel-
ative phase of RF current flowing through four elements
of the type-III antennas, an azimuthal mode number m

of the excited wave magnetic field b-exp[i(m8+k z-
—tat)] can be selected among m =+1 (right handed,
electron diamagnetic direction), m = —

1 (left handed),
and m = ~ 1 (nonrotating). The type II cannot drive
the rotating field at present, so that the type III is used

in most of the present experiments. Wave frequency rel-

ative to the ion-cyclotron frequency ta/co„ is changed by
varying the magnetic-field intensity with the oscillator
frequency of 9.6 MHz fixed. The radiation power of the
type-III antenna is typically 200 kW in total with the
duration of 50 ms.

For plasma production, dominant use is made of the
central-cell RF power for ionizing puffed hydrogen gas
and heating the plasma in the central cell and trapping
into the anchor cells. ' This RF startup mode has a ca-
pability of building up quickly a central-cell plasma with

a relatively high density of (0.3-1.0)&&10" cm (on
axis) and a high averaged ion temperature of 0.1-3.2
keV, depending on experimental conditions such as the
excited wave mode and the location of the cyclotron res-
onance layer. In the current experiments no use is made
of electron-cyclotron heating (ECH) and neutral-beam
(NB) sources, which are conventionally used to produce
plug/barrier potentials in the end cells. '

Magnetic probes are inserted radially to measure radi-
al profiles of three components b„,bg, b- of the wave field.
To determine axial wave number k, and azimuthal mode
number I, a pair of the probes aligned along the field
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lines and an array of the probes in the azimuthal direc-
tion are used in the central cell, respectively. Wave
number and wave polarization are detern ined from
fast-Fourier-transform (FFT) cross-power spectral anal-

yses. In Fig. 1(b) the wave frequency normalized by the
ion-cyclotron frequency co/ru„(z) is plotted along the ax-
ial position z. Locations of the antennas and magnetic
probes are indicated in the same figure. In Fig. 1(c) a
schematic of the dispersion relations for the fast and
slow Alfven waves is sho~n in order to have a qualitative
idea of the wave-propagating region.

Dispersion characteristics are plotted in Fig. 2(a) for
m =+1 and —

1 waves excited in the central cell by use
of the rotating antennas. The axial wave number k is

normalized by the local ion dispersion length c/cop;(r),
where c and m~; are the speed of light and ion plasma
frequency, respectively. The central-cell density is

(1 x10' )-(1&10' ) cm ' on the axis and the radial
profile is a Gaussian with a half-maximum diameter of
15-20 cm. The solid lines in Fig. 2(a) are theoretical
dispersion curves calculated under the assumption of a
cold, homogeneous cylindrical plasma with the parame-
ters listed in Fig. 2(a). Experimental results agree well

with the cold plasma dispersion.
Radial profiles of wave field components b and b and

hap ase diff'erence he between b„and b~ are shown in

Figs. 2(b) and 2(c) for m =+1 excitation. From the
phase diA'erence, it is confirmed that the excited fast
wave is right-hand circularly polarized (RHP) in the
core region, left-hand circularly polarized (LHP) in the
edge region, and linearly polarized with radius of 13 cm.
Thisis profile is consistent with the theoretical prediction
for a cold, homogeneous cylindrical plasma. For I
= —

1 excitation at ro/rii„& 1 with the magnetic field
shown by the dotted line in Fig. 1(a) the excited slow
wave is LHP in the core and RHP in the edge, as
theoretically predicted. It is also confirmed that the
probe located beyond the ion-cyclotron resonance layer
cannot detect the slow wave, since the wave damps away
through the resonance layer.

In the transition-anchor region with a nonaxisym-
metric and nonuniform magnetic field, radial profiles of
the wave components b, and b~ and the phase difference
are measured. Azimuthal and axial wave numbers can-
not be measured due to the spatial difficulty of installing
an array of magnetic probes. In both regions the wave
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as follows. The flux tube in the transition and the anchor
regions has an elliptical cross section due to a
quadrupole-field component with an azimuthal-angle
dependence of nearly cos20. The quadrupole-field modu-

lation of the magnetic field can be supposed as a virtual
mode with dominant Fourier components of mo = ~ 2 at
the frequency coo=0. Then the fast or slow wave with

mode m] propagating through these regions will be spa-
tially modulated to excite ~aves with m2=m]+ mo.
Furthermore, an axial wave number k] is also spatially
modulated by ~ku to produce kp=k~+ ko, where + ko
is associated with the axially nonuniform magnetic field.

Subject to these matching conditions of both azimuthal
and axial wave numbers together with a frequency
matching condition co2 =m] + coo, the m ]

= + 1 fast
[m~ = —

1 slow] wave could mode convert through the
azimuthal modulation of ma=+ 2 to m2= —

1 and +3
slow [mq =+1 and —3 fast] waves, as shown schemati-
cally in Fig. 4(a) [4(b)]. Here, the mq =+3 slow wave

can be hardly excited, since slow waves with any positive
rn have never been observed. The mq = —3 fast wave is

predicted to be cut off at to/to„( 4, as shown schemati-
cally in Fig. 4(b). Then, the m

~

=+ 1 fast (m ~

= —
1

slow) wave will resonantly mode convert to the m2= —
1

slow (m2=+1 fast) wave, respectively. The m2= —
1

slow (m2=+1 fast) wave is a body wave with a peaked
radial profile of the amplitude with LHP (RHP) in the
core. The m2= —

1 slow wave with LHP in the core of
the anchor can heat ions on the cyclotron resonance lay-
er. This proposed model of the mode conversion can ex-

plain consistently the experimental results of the polar-
ization reversal and the anchor ion heating by fast waves

excited in the central cell.
Quantitatively, the length of the transition region of

about 3 m corresponds to the normalized modulation
wave number cko/to~;-0. 35 for a plasma density of
5x10' cm . The normalized wave numbers for fast
and slow waves are predicted in Fig. 2(a) to be 0.35 and

0.7 for an averaged wave frequency tu/ta„-0. 5 in the
transition region. Then the matching conditions of wave

number and frequency in Figs. 4(a) and 4(b) are
satisfied. Actually, both to/tu„and cku/to„; in the transi-
tion region have broad spectra due to the strongly
nonuniform magnetic field and the slow wave has a
variety of eigenmodes in a radially nonuniform plasma. '

This causes a large redundancy for satisfying the match-

ing conditions for a wide range of the plasma density, as
observed in GAMMA 10.

The present model on mode conversion is based on a
local theory, which could not be generally applied for
cases where the scale length of the field gradient is com-
parable to the wavelength, as is in the present experi-
ments. Nonlocal formulation on coupled Alfven wave

propagation in a quadrupole magnetic field has been
done to validate the proposed idea of the mode conver-
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FIG. 4. Schematic of mode conversion between fast and
slow waves via spatial modulation (+ mo and + ko). (a) Con-
version from m~ =+1 fast to m~= —

1 slow Alfven wave. (b)
Conversion from ml = —

1 slow to m. =+1 fast wave.
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sion mechanism. ' Approximate coupled solutions for a
weak periodic quadrupole-field modulation shows that a
linear mode conversion between fast and slow waves

occurs in a short conversion distance with the converted
wave amplitude proportional to the quadrupole perturba-
tion and with a high conversion efficiency, as observed in

the experiments. Numerical calculations of the coupled
diA'erential equations are in progress to clarify the steep
field-gradient eA'ect and the strong quadrupole-field
eA'ect on the mode conversion, although the nonaxisym-
metric, quadrupole perturbation is predicted to be essen-
tial to the mode coupling between fast and slow waves.
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