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The interaction of transverse eigenmodes with a relativistic electron beam is analyzed in an overmoded
cyclotron autoresonance maser amplifier, using a nonlinear self-consistent model and kinetic theory. It is

shown that all of the coupled modes grow with the dominant unstable mode at the same growth rate, but
suA'er diA'erent launching losses. The phases of coupled modes are locked in the linear and nonlinear re-

gimes. Simulations indicate that the rf power distribution among the interacting modes at saturation is

insensitive to input power distribution but sensitive to detuning.

PACS numbers: 42.52.+x, 52.35.Mw, 52.75.Ms

One of the most intriguing problems in the generation
of coherent radiation using a relativistic electron beam is

the interaction of multiple electromagnetic eigenmodes
with the electron beam. In free-electron-laser (FEL) os-
cillators' and gyrotrons, mode competition determines
the temporal behavior of the eigenmodes of the cavity
and the radiation spectrum. Multimode phenomena also
occur in overmoded amplifier systems, where the tem-
poral dependence of the eigenmodes is usually sinusoidal.
In such cases, the eigenmodes evolve spatially as a result
of the interaction with the electron beam. A nonlinear
multimode theory is indispensable in order to predict the
rf power in each mode.

Multiple-waveguide-mode interactions have been in-

vestigated using linear theory and computer simula-
tions for FEL amplifiers, but detailed comparisons be-
tween theory and simulations are not (yet) available.
There have been few theoretical studies of multimode in-

teractions in cyclotron autoresonance maser (CARM)
amplifiers '' in waveguide configurations, despite the
fact that many planned CARM amplifier experiments
will operate in an overmoded waveguide.

In this Letter, we present a general treatment of mul-
timode interactions in an overmoded single-frequency
CARM amplifier, using a nonlinear self-consistent model
and kinetic theory. A complete set of CARM amplifier
equations with multiple modes, which are derived from
the standpoint of particle-wave interactions (similar to
the FEL equations derived by Kroll, Morton, and Rosen-
bluth' ), are integrated numerically to calculate the
linear and nonlinear evolution of coupled transverse
eigenmodes and of the relativistic electron beam. In ad-

dy p~ QX„(rt,rg )A„costlr„,
dZ P2

dition, use is made of the linearized Maxwell-Vlasov
equations and the Laplace transform to derive a disper-
sion relation and amplitude equations for the CARM in-

stability with an arbitrary number of vacuum trans-
verse-electric (TE) and transverse-magnetic (TM) wave-

guide modes. The Laplace-transform analysis allows for
analytical calculation of launching losses and the three-
dimensional radiation field profile. Although the present
treatment is devoted specifically to the CARM amplifier,
we believe that the basic ideas are applicable to a large
class of amplifier-type free-electron devices including
free-electron lasers, gyrotron traveling-wave tubes, '

Cerenkov masers, ' etc.
We consider the CARM interaction ' of a relativistic

electron beam with a copropagating electromagnetic
wave (co, k) in a lossless cylindrical waveguide of radius
r immersed axially in the uniform magnetic field Boe, .
The cyclotron resonance condition is co =k, U. +10,/y.
Here, t., and y are, respectively, the axial velocity and
relativistic mass factor of the beam electrons; I is the
harmonic number; 0, =e80/mc is the nonrelativistic cy-
clotron frequency; m and —e are the electron mass and

charge, respectively; and c is the speed of light in Uacuo.
For simplicity, we present the analysis for the multimode
CARM interaction involving an arbitrary number of
vacuum TE modes with azimuthal dependence e', main-
taining the general features of multimode phenomena
(which will be discussed elsewhere' ).

It can be shown that a complete set of nonlinear equa-
tions describing an overmoded CARM amplifier with

multiple TE~„modes can be expressed in the dimension-

t

less form '
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where n is a positive integer and the normalized coupling
constant g„ is defined by

4(P~„—1) Ib

P„(v.' —1)[Ji(v.)]' 4
Equations (1)-(3) describe the dynamics of each indi-

vidual particle, and Eq. (4) governs the slowly varying
wave amplitude A„(z) and phase shift 6„(z) for each
TE~„mode. The phase shift 8„(z) takes into account
changes in the dispersive properties of the waveguide

mode due to the CARM interaction. In the simulations,

typically, we use more than 1024 particles. In Eqs.
(1)-(4), z =toz/c is the normalized interaction length;
to=2trf is the angular frequency of the input signal;
I1, =0,/to is the normalized nonrelativistic cyclotron
frequency; p. =p, /mc = yP. , p~ =p~/mc = yP~, and

y =(1+p. +p&) 't are, respectively, the normalized axi-
al and transverse momentum components, and the rela-

m'c' (v,' —1)[J)(v,)]', dB.

tivistic mass factor of an electron;

y„=k-„z+6„(z) —tot + tan '(p„,/p„) —tr/2;

Ib is the beam current; l~ =mc /e=17 kA is the Alfven
current; X„(rt,rg ) =Jo(k„rs)J!(k„rt ) and W„(rt, rg )
=Jo(k„rg)J~(k„rt )/k„rt are geometric factors; Jo(x) is
the lowest-order Bessel function; J!(x) =dJ~(x)/dx is
the derivative of the first-order Bessel function; v„ is the
nth zero of J!(x); k„=v„/r„, is the transverse wave num-

ber associated with the TE~„mode; P„, =co/ck „=(1
—c'k„'/co') 't is the normalized phase velocity of the
vacuum TE~„waveguide mode; rt =p~/m t1, is the elec-
tron Larmor radius; rg is the electron guiding-center ra-
dius which is assumed to be constant; ( ) denotes the
ensemble average over the particle distribution.

The rf power flow over the cross section of the wave-
guide for the TE~„mode, P„(z), is related to the normal-
ized wave amplitude A„by the expression

(s)

where m c /e —=8.7 GW. Equations (1)-(4) are readily solved numerically to yield the three-dimensional radiation
field profile and the distribution of rf power among coupled modes in the multimode CARM interaction. For the simu-
lation results presented below, the particles are loaded such that the right-hand side of Eq. (4) vanishes at z =0, corre-
sponding to an initially unbunched electron beam.

By performing the Laplace transform of the linearized Maxwell-Vlasov equations, a dispersion relation and ampli-
tude equations can be derived for the multimode CARM interaction, with an arbitrary number of vacuum TE and TM
waveguide modes coupling to the electron beam. For example, applying our results to the coupling of a cold, thin
(k„rg « I ), azimuthally symmetric electron beam with TE~„modes at the fundamental cyclotron frequency (I = 1 ), and
assuming dE„(0)/dz =0, the Laplace transform of the equations for the amplitudes E„(z)-A„(z)exp[ik,„z+6„(z)]to
leading order in c k„/(to —0,/y —k, v, ) can be expressed in the matrix form'

2

s —k„+ E„(s)+ g 2
E„(s)=sE„(0)+g, E„(0).c' " .-i (to —n„/y+iv s)' " " .=i co —n, /y+iv s).'.

In Eq. (6), s=ik. is the Lapla-ce-transform variable;
P- =v-/c and P& =vj/c are, respectively, the normalized
axial and transverse velocities of the equilibrium beam
electrons; ck~ is the largest cutofl' frequency below the
operating frequency co; and the dimensionless coupling
constants e„„are defined by

4P& Ib X„(rt,rg )X„(rt,rg )

yp= 4 [(v„'- —1)(v„' —I )] 't'Ji(v„) Ji(v„)

The amplitudes E„(z) and the dispersion relation can

' 2

!
be obtained by solving Eq. (6) and performing the in-

verse Laplace transform of E„(s). The rf field can then
be expressed as the superposition of growing, oscillatory,
and damped modes. The axial wave number of each
mode corresponds to a solution of the dispersion relation,
and the amplitude is proportional to the residue obtained
using Eq. (6). Therefore, this formalism allows for an
analytical calculation of launching losses which occur be-
fore the most unstable mode dominates the interaction.

For two coupled modes, TE]„and TE]n, it is readily
shown from Eq. (6) that the dispersion relation is

k +k
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k +kn~-
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FIG. 1. The rf power in the TE~ 1 and TE~2 modes as a func-
tion of interaction length z for (a) single-mode CARM interac-
tions and (b) the CARM interaction with the coupled modes.
Note in (b) that the TE~& mode grows parasitically with the
dominant unstable TE~ ~ mode at the same spatial growth rate
due to mode coupling, despite the diff'erences in launching
losses.

FIG. 2. The TElq rf power as a function of interaction
length for a CARM with the TEll and TEl2 modes coupling to
the beam. Here, the two solid curves depict the linear and
nonlinear evolution of rf power for the TElp mode obtained
from the simulations with two input rf power distributions: (i)
Pp(TE~~) Pp(TE~2) =100 W, and (ii) Pp(TEi~) 100 W and
Pp(TEi2) 1 W, while the two dashed curves are the corre-
sponding ana1ytical results from Eq. (6).

A, beam energy Eb =1.0 MeV () =2.96), initial pitch
angle e~p =Pzp/P p =0.6, waveguide radius r„=2.7 cm,
and axial magnetic field B0=3.92 kG, corresponding to
the TEI I mode in resonance, and the TE~2 mode oA reso-
nance, with the electron beam. The solid curves are the
simulation results obtained by integrating numerically
Eqs. (1)-(4) with 1024 particles; the dashed curves are
obtained analytically from Eq. (6). The inclusion of the
coupling of the TE~ ~

and TE~2 modes results in instabili-
ty for the TE~2 mode as seen in Fig. 1(b), while the

When the two modes are well separated and p„„k„(k:
+k„~ —

po /c ) &&e„„k„(k-+k„—co /c ), corresponding
to the beam cyclotron mode, ro=k, v, + ft, /y, in reso-
nance with the TE~„mode, ro=c(k. +k„) '~, the cou-
pled-mode dispersion relation in Eq. (7) becomes the
usual single-mode dispersion relation '

k. +A„—
c 2 (co —n, /y —k.- v-)
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for the TE~„mode.
Typical results from the computer simulations and ki-

netic theory are summarized in Figs. 1-3, for the case of
a cold, thin (k„rz((1), azimuthally symmetric electron
beam. Figure 1 shows the dependence of rf po~er, in the
TE~ ~

and TE~2 modes, on the interaction length z for (a)
single-mode CARM interactions and (b) the CARM in-

teraction with both modes coupling to the beam. The
system parameters in Fig. 1 are beam current Ib =500

3.0
I

4 0

Ib = 500A e~= 0.6I, ' I, I

5.0 6.0 7.0
a, (kG)
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FIG. 3. The fractional rf power at saturation in four cou-
pled TEl„modes as a function of detuning. Here, the values of
the resonant magnetic field for the TEll, TEl2, TE13, and TE14
modes correspond to B0=3.74, 4.29, 5.33, and 6.98 kG, respec-
tively.

3391



VOLUME 65, NUMBER 27 PHYSICAL REVIEW LETTERS 31 DECEMBER 1990

single-mode theory predicts complete stability for the
TE~q mode as seen in Fig. 1(a). In fact, in Fig. 1(b), the
TE~2 mode grows parasitically with the dominant unsta-
ble TE~~ mode, and the two coupled modes have the
same spatial growth rate —Imh, k: & 0, corresponding to
the most unstable solution of the dispersion relation in

Eq. (7). Because the TE~~ mode is in resonance with the
beam mode and the TE~2 mode is detuned from reso-
nance, the TE~2 mode suff'ers greater launching losses
than the TE~~ mode.

The simulation also shows that the relative rf phase
h@(z) = (k, q

—k.- ~ )z+ b, (z) —8~ (z) for the coupled
modes is approximately constant in the exponential gain
regime. Such a phase-locking phenomenon is expected
from linear theory, because the dispersion relation in Eq.
(7) yields a unique solution of k, with a negative imagi-
nary part, which determines the spatial growth rate and

phase shifts for both modes in the exponential gain re-

gime. What is remarkable is that phase locking persists
even in the nonlinear regime, at least for some finite in-

teraction length after saturation. This reveals two gen-
eral features of the multimode CARM interaction: (1)
all of the coupled modes have the same growth rate, but
suff'er diff'erent launching losses which depend upon de-
tuning characteristics; (2) the phases of coupled wave-

guide modes are locked in the exponential gain regime,
and remain locked for some finite interaction length after
saturation.

Another interesting feature of the multimode CARM
interaction is that the rf power distribution among the
coupled modes at saturation is insensitive to the small
input rf power distribution at z =0. Figure 2 shows the
results of the simulations for the coupling of the TE~~
and TE~2 modes with two different distributions of input
rf power. In Fig. 2, the two solid curves depict the linear
and nonlinear evolution of rf power in the TE~t mode ob-
tained from the simulations with the two input rf power
distributions: (i) Pp(TE) )) =Pp(TE)p) =100 W, and (ii)
Pp(TE~~) =100 W and Pp(TE~2) =I W, while the two
dashed curves are the corresponding analytical results
from Eq. (6). Here, only the TE~2 mode is plotted be-

cause the TE~~ mode remains virtually unchanged for
the two cases.

Figure 3 depicts the detuning characteristics of the
saturated rf power distribution among four coupled TE~„
modes (n =1,2, 3,4), as obtained from the simulation
with an input power of 100 W per mode. By increasing
the axial magnetic field Bp in Fig. 3, the beam mode is

(uned through the resonances with the TE~ ~, TE~2, TE~3,
and TE~4 modes at Bp=3.74, 4.29, 5.33, and 6.98 kG,
respectively. The fractional rf power for a given mode
reaches a maximum at its resonant magnetic field, while
the power decreases rapidly for ofr'-resonance modes. In
the transition from one resonance to another, however,
two adjacent competing modes can have comparable rf
power levels at saturation.

In summary, we have presented a general treatment of
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multimode interactions in an overmoded CARM ampli-
fier using a nonlinear self-consistent model and kinetic
theory. Good agreement was found between the simula-
tions and kinetic theory in the linear regime. It was
shown analytically, and confirmed in the simulations,
that all of the coupled waveguide modes grow with the
dominant unstable mode at the same spatial growth rate,
but suAer diA'erent launching losses which depend upon
detuning. Phase locking occurs among coupled wave-

guide modes in the linear and nonlinear regimes. The
saturated rf power in each mode was found to be insensi-
tive to input power distribution, but sensitive to detuning.
An accurate calculation of the growth rate and satura-
tion levels in overmoded CARM amplifiers requires the
use of a multimode theory in the linear and nonlinear re-
gimes. We believe that the present analysis can be gen-
eralized to treat multimode phenomena including corn-
petition among con vectively and absolutely unstable
modes ' in various free-electron devices.
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