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Collapse and Revival of the State Vector in the Jaynes-Cummings Model:
An Example of State Preparation by a Quantum Apparatus
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The evolution of the atomic state in the resonant Jaynes-Cummings model (a two-level atom interact-
ing with a single mode of the quantized radiation field) with the field initially in a coherent state is con-
sidered. It is shown that the atom is to a good approximation in a pure state in the middle of what has
been traditionally called the "collapse region. This pure state exhibits no Rabi oscillations and is

reached independently of the initial state of the atom. For most initial states a total or partial "collapse
of the wave function" takes place early during the interaction, at the conventional collapse time, follow-

ing which the state vector is recreated, over a longer time scale.

PACS numbers: 42.50.—p, 03.65.—w, 42.52.+x

The Jaynes-Cummings model' (JCM) is perhaps the
simplest nontrivial example of two interacting quantum
systems: a two-level atom and a single mode of the radi-
ation field. In addition to its being exactly solvable, the
physical system that it represents has recently become
experimentally realizable with Rydberg atoms in high-Q
microwave cavities. Comparison of the predictions of
the model with those of its semiclassical version have

served to identify a number of uniquely quantum proper-
ties of the electromagnetic field; indeed, the model

displays some very interesting dynamics, and the differ-
ences with the semiclassical theory are both profound
and unexpected.

The JCM would also appear to be an excellent model
with which to explore some of the more puzzling aspects
of quantum mechanics, such as the possibility (or impos-
sibility) to describe an interacting quantum system by a
state vector undergoing unitary evolution; i.e., the so-
called "collapse of the wave function. " In the semiclassi-
cal version, the atom interacting with the classical elec-
tromagnetic field may at all times be described by a state
vector evolving unitarily. What happens, however, when
it is recognized that the field is itself a quantum system

(which leads inevitably to "entanglement" )? This is the
question addressed in this Letter. It does not seem to
have been addressed before in full generality, although
entanglement in the JCM dynamics plays an essential
role in a recent measurement-theory-related proposal of
Scully and Walther, and preparation of a pure state of
the field in the JCM has been the subject of several
theoretical investigations and may be close to being
achieved experimentally.

The resonant JCM interaction Hamiltonian may be
written as

Ht = hg(~a&(b (a+ a'(b)(a
~ ),

where g =d(co/It Veo) ' is a coupling constant (d is the
atomic dipole matrix element for the transition, m is the
transition frequency, and Vis the mode volume), ~a) and
~b) are the upper and lower atomic levels, respectively,
and a and a are the annihilation and creation operators
of the field mode, which in the semiclassical theory are
simply replaced by c numbers. The solution to the
Schrodinger equation for the atom initially in state
y(0)).,&,~ =a~a)+ p b) and field initially in state
ttt(0))fi iu g„-OC„n) is

~y(t)) = g [[aC„cos(gOn+1 t) —ipC„s+i

l(gnawn

+1 t)]~ a& +[—

iaC„~sin(gran t)+pC„cos(gran

t)]~b)}~n),
n=O

and the entanglement of the two interacting quantum
systems is readily apparent. Accordingly, to describe the
evolution of the atom alone it is convenient to introduce
the reduced density matrix p, , =TrI(~y(t))(y(t) ~)
(where the trace is over the field states). Unlike the
state vector, the density operator does not really describe
an individual system, but rather an ensemble of identi-
cally prepared atoms. A necessary and sufficient condi-
tion for the ensemble to be in a pure state is that
Tr(p, , ) =1 in which case a state-vector description of

each individual system of the ensemble is possible. On
the other hand, for a two-level system, a maximally
mixed ensemble (which we may call a totally unpolar-
ized ensemble, by analogy with a spin- —,

' system) corre-
sponds to p,. &

= —,', and therefore to Tr(p, , ) = —,
'

.

Consider the case where the initial state of the field is
a coherent state ~v), with v=n' e '~ (n is the average
number of photons in the field). Coherent states are the
natural quantum analogs of a classical field;' the JCM
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evolution for an initial coherent state, however, is known

to diff'er substantially from the semiclassical expectations
for long enough interaction times, the population inver-

sion displaying well-known "collapses" and "revivals. "' '

The time evolution of Tr(p, , ) is plotted in Fig. 1 (top)
for a typical case, n =49 and an atom initially in the
lower state ~b). The atomic state remains approximately
pure for a short time of the order of I/g, which is the
characteristic "collapse time' for the atomic inversion as
well; then follows what might now properly be called a
collapse of the wave function, the atomic ensemble
becoming completely random [Tr(p.„)= —,

' ] for a while.

But then, around the time given, to a very good approxi-
mation, by ro=n' z/g, a revival takes place, and one

finds that the atom is again, almost exactly, in a pure
state.

This "recreation of the state vector" takes places right
in the middle of what has traditionally been called the
JCM "collapse region,

" as Fig. 1 (bottom) illustrates:
That is, at the time to=n' z/g the population inversion

is zero. This surprising result shows that to look only at
the population inversion, as has been done traditional-

ly,
' is misleading. The inversion plot in Fig. 1 would

suggest that throughout the whole collapse region the
atoms have somehow lost coherence and become ran-

domly polarized, whereas this appears to be true only
around the initial collapse time. Afterwards, one finds

instead that, well within the conventional collapse region,
almost perfect coherence is regained: Around t =to the
atoms are all almost exactly in phase, indeed, to a good
approximation (which is better the larger n is, as the cal-
culation below indicates) in a pure state. By contrast,
the conventional "revival region" around t„„=2n' x/g
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FIG. 1. Top: The quantity Tr(p.,', ) as a function of time for
an atom initially prepared in the lower state ~b) and field ini-

tially in a coherent state with n =49. Bottom: The average
atomic inversion (probability to find the atom in the upper
state minus the probability to find it in the lower state) as a
function of time for the same initial conditions as above.

is not where maximum coherence occurs. [Just as for
the conventional revivals, there are later recurrences of
an "almost pure state" at the times tq =(2q+1)n' z/g
(where q is an integer), but, again similar to what occurs
for the population revivals, the trace of p, , is never again
as high as for to].

It is not hard to understand, from the solution (2),
what happens around tq =(2q+1)n '

x/g. One may use
the identity

]/2

(n+1) '~ =n '~ +n ' 1+
n

+n —n

n

' I/2

and expand the terms in square brackets in powers of 1/n, which yields, through second order, the approximation

gr(n+ I ) '
=gtn

' + 1—
2n

n —n+ —,
'

ttq+ (r rq)]—
2n

2n

n —n+ —. g(r —r )
=gtn'~ +(2q+1)——(2q+1)— +

2 2 2- ]/2
(3)

The third term on the second line of Eq. (3) may be
made negligible for a coherent state with a sufficiently
large average photon number, for which (n —n)/n is at
most of the order of n

' for the states that contribute
significantly to the sum (2); it is clear, however, that this
term becomes increasingly important for later revivals,
as q increases. In the following, only the first restoration
of the state vector, around to, shall be considered, and
this term neglected altogether. The fourth term in (3)

indicates the time scale over which the state remains ap-
proximately pure. For times such that

I i —r o I ((2n ' /g,

one may then approximate gt Jn+1 by gr Jn+x/2
Further noting that for a highly excited coherent state
~v), C„=vC„—

~
Jn =e ' C„—~ for the coefficients C„

which are significantly diA'erent from zero (i.e., those
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near n -n =IvI ), Eq. (2) resolves into

Iy(t)&= —(e "Ia)+iIb)) g [aC„~sin(g Jn
t)+iljC„cos(gran

t)]In),
n=0

(5)

which shows that not only the atom, but also the field is

in an approximately pure state at this time. A significant
diA'erence is that the state of the field is evolving rapidly
in time, whereas that of the atom is (in the interaction
picture) essentially static over the time scale indicated by
(4). (Note that this is a time scale much larger than a
Rabi period, T =a/gn, yet the atom is not performing
any Rabi oscillations. ) Of course, in agreement with the
apparent collapse shown in Fig. 1 (bottom), the popula-
tion inversion in the state

I y(t =tp)&,, „=(I/&2)(e "Ia&+i Ib&) (6)

is zero, but the ensemble shows perfect coherence.
Perhaps the most remarkable feature of the state (6)

is that, as the derivation of Eq. (5) shows, it is reached
at t =tp regardless of the initial atomic state Two or. -

thogonal states, such as Ia) and Ib), at t =0, would still

result in the same state at t =tp [the orthogonality is of
course picked up by the field state, which, as shown by
(5), does depend on a and P], which indicates that one
cannot think of any hidden unitary evolution for the
atomic system alone that would connect its state at t =0
to its state at t=tp. [Indeed, the complete independence
of the initial conditions for the final state of the atom
suggests that the collapse of the initial atomic wave func-
tion which appears to take place around gt =2.5 (see
Fig. 1) is complete; i.e., the atom s memory of its initial
state is obliterated by the interaction with the field.
These issues will be explored in detail in a forthcoming
publication. ]

We have here, then, an example of state preparation
by a quantum apparatus, i.e. , by an apparatus (the elec-
tromagnetic field in this case) which is described fully
quantum mechanically. The process may be seen in two
stages, each one with its characteristic time scale: First,
the initial state of the system is destroyed, then a new

state is "recreated. " In between, the notion of an indivi-

dual state vector for the atom is probably meaningless,
except for some special initial states to be mentioned
presently [see Eqs. (7) and (8) below].

It is possible to view the recent results of Slosser and
co-workers ' ' also as examples of state preparation
(in this case, a field state) by a quantum apparatus (a se-

quence of atoms), which involve the JCM dynamics.
These examples rely on the occurrence of "field trapping
states. " The present system, it turns out, also has a set
of approximate "atomic trapping states, " ' although
their influence on the dynamics is somewhat less obvious.
If one considers the semiclassical version of the interac-
tion Hamiltonian (1), it is easy to see that the states of
the form (6) are precisely its eigenstates, for an ap-

propriate choice of phase of the classical field. If p is the
phase of the field, however, the corresponding eigenstate
is not (6), but rather

ly~&=(I/~»(e "Ia& ~ lb&). (7)

Semiclassically, these states do not evolve in time at
all:' They correspond to the atomic dipole being initial-
ly in phase or 180' out of phase with the field, so that no
exchange of energy results. In the quantized case, be-
cause a

I
v) is not exactly equal to c *

I v), the states
I y~ )

do evolve, but over a time scale much longer than the
Rabi oscillation. It may be seen, by using (7) as an ini-
tial state for the general solution (2) and expanding the
arguments of the trigonometric functions as in (3), that,
as long as gt/n is not very large, the atomic state does
not collapse when it is initially given by (7); rather, it
evolves as an approximately pure state according to

I y~ & —(I/%2)(e "Ia) + e —'~' '" Ib)) . (8)

Clearly this reduces to (6) at t =tp, as it should. Initial
states near Iy+) in the atom's Hilbert space show ac-
cordingly a less drastic wave-function collapse than, for
instance, the initial states Ia) or Ib); the latter are first

completely destroyed, before a state vector is recreated
which brings the atom "into step" with the special solu-
tion (8) at t =tp

The existence of a pure state in the midst of the LCM
"collapse" region could be verified experimentally, in

principle: One needs to prepare a field in a micromaser
cavity in a coherent state, then fly an atom through the
cavity with a time of flight to. Upon exit, measurements
of the population inversion alone would sometimes show
the atom to be in state Ia) and sometimes in state Ib),
apparently randomly; but if instead a z/2 pulse is applied
to the atom just as it leaves the cavity, the state (6)
could be rotated wholly into, say, Ia), and a subsequent
measurement of the population would reveal that,
indeed, the atoms left the cavity in a well-defined polar-
ization state. (By contrast, one could verify that the en-
semble at t =2.5/g is completely unpolarized, by check-
ing that there is no choice of phase of the tr/2 pulse that
would yield more than a 50-50 inverted-noninverted en-
semble. ) The independence of the initial atomic state
might likewise be tested.

It may not be possible to prepare an exact coherent
state in a micromaser cavity, but a simple kind of co-
tangent state ' ' may be shown to lead to essentially
identical results [specifically, for the example shown

here, numerical calculations have shown that a cotangent
state trapped between the vacuum and the state
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N„=199, with a=P =1/K2 (notation of Ref. 14) might
be used equally well]. One di%culty is that the atom
modifies significantly the cavity field, which would have

to be "restored" to its original state in between measure-
ments on individual atoms. Apart from this, the main

difticulties of a hypothetical experiment would be essen-

tially the same as for other proposals ' which involve

phased superpositions of atomic energy eigenstates: In

every case an extremely precise control of the atomic tra-
jectory and velocity is necessary. In view of the recent
progress towards field state generation in micromasers,
the eventual experimental verification of the state-vector
collapse and revival discussed in this Letter does not ap-

pear to be impossible, although it would certainly not be
easy to achieve.

Some of the features of this model will be discussed at
greater length in the context of the quantum theory of
measurement in a future publication.
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