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Two examples are given that substantially simplify the no-hidden-variables theorem of Kochen and
Specker, greatly reducing the number of observables considered and requiring no intricate geometric ar-
gument. While one of the examples also obeys a more powerful version of Bell's theorem, the other does
not. The examples provide a new perspective on both of these fundamental theorems and on the relation
between them.
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The Kochen-Specker (KS) theorem ' demonstrates
that it is, in general, impossible to ascribe to an individu-
al quantum system a definite value for each of a set of
observables not all of which necessarily commute. Of
course elementary quantum metaphysics insists that we
cannot assign definite values to noncommuting observ-
ables; the point of the KS theorem is to extract this
directly from the quantum-mechanical formalism, rather
than merely appealing to precepts enunciated by the
founders. If such an assignment of values turned out to
be possible in spite of those precepts, then uncertainty
relations for the results of measuring noncommuting ob-
servables could be viewed as a manifestation of the sta-
tistical scatter of these definite values in many different
individual realizations of the identical quantum state.
The state vector alone would not provide complete infor-
mation about a system, and the additional values in par-
ticular realizations of the same quantum state could be
regarded as "hidden variables. "

A similar conclusion against hidden variables is
reached by Bell's Theorem, but in a rather different
way. The violation of quantum dogma contemplated by
Bell is weaker than that tested by Kochen and Specker,
noncommuting observables only being provided with
simultaneous values when required to have them by the
simple locality condition of Einstein, Podolsky, and
Rosen (EPR). On the other hand, Bell's refutation has
a strongly statistical character that the argument of Ko-
chen and Specker does not.

I describe below a simple system for which one can
prove both a KS and a Bell-EPR theorem. The KS
theorem is substantially simpler than the original argu-
ment of Kochen and Specker; the Bell-EPR theorem
eliminates the statistical aspect of Bell s original argu-
ment; and the applicability of both theorems to a single
system clarifies their relationship, clearly revealing the
Bell-EPR result to be the stronger of the two.

The discussion that follows is inspired by a new ver-
sion of Bell's Theorem due to Greenberger, Horne, and
Zeilinger (GHZ), by the observation of Stairs' that
GHZ can also be made the basis for a KS theorem, and
by a further simplification of the 6HZ version of the KS
theorem due to Peres. " I first describe the assumptions

tested by the KS theorem and the argument of Peres
which disposes of them in an extraordinarily simple way.
I then give a refinement of Peres's argument, and show
how an independent but analogous argument of Stairs
extracts a very simple KS theorem for a 6HZ example.
Finally, I show that while the 6HZ example obeys a
Bell-EPR theorem as well as a KS theorem, the example
of Peres does not work as a Bell-EPR theorem, for
reasons that illuminate the structure of the Bell-EPR ar-
gument.

Before we start entertaining heretical notions about
preexisting values for observables, let us note, as a piece
of entirely orthodox quantum mechanics, that if some
functional relation

f(A, B,C, . . . ) =0

holds as an operator identity among the observables of a

mutually commuting set, then since the results of the
simultaneous measurements of A, B,C. . . will be one of
the sets a, b, c. . . of simultaneous eigenvalues of
A, B,C, . . . , the results of those measurements must

also satisfy

f(a,b, c, . . . ) =0,
whatever the state of the system prior to the measure-
ment.

With this in mind, let us call the values we would like

to try to ascribe to the observables A, 8, C, . . . for an in-

dividual system v(A ), v(8), v(C), . . . . Since these are
to be the values revealed by a subsequent measurement,
the value associated with an observable must be one of
its eigenvalues. Since any commuting subset of the ful1

set of observables can be measured simultaneously, if the
values are to agree with the predictions of quantum
mechanics they must be constrained by the condition
that any relation f(A, 8,C, . . . ) =0 holding as an identi-

ty among operators in a commuting subset must also
hold for their values:

f(v(A) v(8) v(C), . . . ) =0.
The KS theorem proves that such an attempt to assign

values cannot, in general, succeed. ' Their counterex-

1990 The American Physical Society 3373



VOLUME 65, NUMBER 27 PHYSICAL REVIEW LETTERS 31 DECEMBER 1990

ample consists of a three-dimensional state space, which

can be vie~ed as describing the spin states of a spin-1
particle. The observables to be assigned values are
squares of spin components along different directions. It
is an elementary property of the spin-1 angular momen-
tum operator that the square of its component along any
direction has eigenvalues 0 or 1, that the squares of its
components along two orthogonal directions commute,
and that the sum of the squares of its components along
three mutually orthogonal directions is just the c-number
2. Kochen and Specker originally produced a set of 117
observables, associated with the squares of the com-
ponents of the angular momentum operator along 117
diA'erent directions. ' They demonstrate with a some-
what intricate geometrical argument that there is no way
to assign the values 0 or 1 to all these observables, con-
sistent with the requirement that v(A)+ v (B)+v(C) =2
for any set of observables A, B, and C associated with

three mutually orthogonal directions. To the well

trained quantum mechanician it must surely seem shock-

ing that the direct refutation of so heretical an attempt
should require so elaborate a counterexample, but that is

where things have stood for almost 25 years. We do not
pursue the intricacies of the KS demonstration here, but
turn to some new and very much simpler counterexam-
ples.

Peres has found a spectacular simplification in the
four-dimensional space of two spin- —, particles. Consid-
er an attempt to assign values to the six operators a,'o;, ,
cr~', o„o,', a „, 0 „a),. This attempt must fail if the parti-
cles are in the singlet state, for to agree with the predic-
tions of quantum mechanics in that state, the values
must satisfy v(o, ) = —v(cr,') and v(cr~, ) = —v(o,', ). But
we must also have v(o„'a, , ) =v(cr„')v(cr, . ) and v(o, ', a, )
=v(cr,')v(cr„),, since each of these identities merely as-
serts that the values of mutually commuting operators
satisfy the same identity as the operators. It follows that
v(cr,'o, )v(o,'o„.) =1., But cr„'a„and cr,', a„commute with

each other and with their product, which is ~.-'cr, ; this re-
quires v(a„'cr, , )v(cr, ', a„) to be equal to v(cr 'cr, ), whi.ch is
—

1 in the singlet state. Therefore values cannot be as-
signed.

While Peres's argument is enormously simpler than
that of Kochen and Specker, unlike theirs, his counterex-
ample relies on the properties of a particular state.
While this in no way diminishes its power as a counterex-
ample, ' one might wonder whether it is the state in-

dependence of the original KS argument that requires its
much greater complexity. We therefore note next that
Peres's argument can easily be recast in a form that
strictly parallels the form of the KS argument, ' making
no reference to properties special to a particular state.
We need only add the three operators o.,'a„, o,', o,, , o-.'a.-

to Peres's set of six, and note that six elementary identi-
ties within mutually commuting subsets of the nine

operators lead, independent of the state of the system, to
the following six constraints on the values assigned to
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those mutually commuting operators: '

v(o'o,')v(cr')v(o') =1,
v(a, ', a,'. )v(o . )v(a') =1

v(a„'a,'. )v(o„')v(cr,'. ) =1,

v(o,'a,')v(o,') v(o,') =1,
v(cr»cr, , )v(cr, , cr )v(cr cr -)=-1

v(cr»cr„) v(a, ' cr)v. (c,r 'cr )=-—1.

(4)

Since the eigenvalues of all nine operators are 1 or
—1, since each value v(A) must be an eigenvalue of the
operator A, and since each value appears twice on the
left of Eqs. (4), the product of all the left sides is l.
Since the product of the right sides is —

1 the assignment
of values is impossible. We have thus reduced the KS
impossibility proof from a consideration of dozens of
operators (in three dimensions) and some extensive
geometrical analysis, to a consideration of nine operators
(in four dimensions) and some trivial arithmetic.

Although this nine-operator four-dimensional sim-

plification of KS is about as elementary as one could
hope to achieve, we shall see below that it works only as
a KS argument, and not as a Bell-EPR argument. In

contrast, the three-particle version of the Bell-EPR ex-
ample of Greenberger, Horne, and Zeilinger can also be
cast in a form that strictly parallels the KS argument
with ten operators in eight dimensions, while retaining
the analytical simplicity of the Peres example. It there-

by provides a new and instructive insight into the rela-
tion between the argument of Kochen and Specker, and
Bell's analysis of the EPR experiment. '

We work in the eight-dimensional space of three spins

&, and attempt to assign values to the ten operators o„',
1 2 2 3 3 1 2 3 1 2 3 1 2 30'p, (Xg, Op, 0'g, (7), 0'g 0'y O'J, O'J. 0'g (Xp, 0), O'J 0'~, and

a'a, -o . Identities among operators in mutually com-
muting subsets now lead to five constraints on these
values: '

v(cr„'cr2cr3) v(cr,' )v(cr~~) v(.cr~~) =1,
v(cr, ' a2cr,3)v(o. ,')v(cr~) v(a, , )=1, ,

v(cr, ' cr)2o„')v(o.,
' )v(cr~!)v(o. „')=1, (5)

v(a'a a„)v(cr)v(cr»„)v(a'„) =1,
v(a„'o'„o'3)v(cr~a, ', o',3)v(cr,~cr2a,3)v(o', o'y'o'3) = —1.

Once again, since the eigenvalues of all ten operators are
1 or —1 and since each value appears twice on the left of
Eqs. (5), the products of all the left sides must be 1 and
the assignment of values is impossible.

The virtue of this example is that it not only works as
an extremely simple KS argument, but can also be used
to give a Bell-EPR argument. ' To use GHZ in the
Bell-EPR context we must consider a system in a partic-
ular one of the simultaneous eigenstates of the three
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1 2 3 1 2 3 z 1 2 3
commuting operators o, cr,, a, a~ cr, o~, , and a~ a, . o.

—say the state 4 in which all three have eigenvalue 1. '

It follows that @ is also an eigenstate of o,' o.„o,
= —(cr'a, , a~, )(a~a„a~, )(cr~'a, cr3) with eigenvalue —I.
We now note that if three mutually well separated parti-
cles have their spins in this state, then we can learn in

advance the result m, of measuring the x component of
the spin of any one of them by far away measurements

of the y components of the other two, since the product
of all three measurements in the state @ must be unity.

For the same reason we can learn in advance the result

m~, of measuring the y component of any one of them by
far away measurements of the x component of a second

and the y component of a third. If (like Einstein) one is

afllicted with a strong antipathy toward nonlocal

influences, then one is impelled to conclude that the re-

sults of measuring either component of any of the three
particles must have already been specified prior to any of
the measurements —i.e., that any particular system in

the state 4 must be characterized by numbers m,', m~', ,

rn„, m, rn,3, m, , which specify the results of whichever

of the four different sets (xyy, yxy, yyx, or xxx) of three

single-particle spin measurements one might choose to
make on the three far apart particles. Because, however,

1 2 3 1 2 3 1 2 34 is an eigenstate of a, ofcr, afa„cr, o,. a, , a„and
0,'o„o with respective eigenvalues 1, 1, 1, and —1, the

products of the four trios of 1's or —1's must satisfy the

relations

my'm, m =1 m.'m~m, =1

m'm m =1 m'm m = —
1

which, once again, are mutually inconsistent, the product
of the four left sides being necessarily +1.

Evidently GHZ is a stronger argument in its Bell-EPR
form than in its KS form. The KS form refutes the at-
tempt to assign values to arbitrary observables; the Bell-
EPR form refutes the attempt to assign values only to
those observables required to have them by Einstein lo-
cality. Of course the Bell-EPR form of the argument,
unlike the KS form, depends critically on the properties
of certain particular states, but the fact that the stronger
KS assumptions lead to a stronger refutation (that works
in an arbitrary state) is immaterial: A refutation is a re-
futation.

A comparison between the original forms of Bell-EPR
and KS is not as transparent because Bell's Theorem,
unlike KS or the theorem of Bell in Ref. 1, does not
demonstrate a direct inconsistency between the values re-
quired to exist by Einstein locality, appealing instead to
an inconsistency in the statistical distribution of results
those values imply for many runs of an additional experi-
ment. I suspect it is for this reason (and also because of
its independence of any particular state) that the KS
theorem has continued to be of interest right along with
Bell's Theorem. The strengthening of Bell's example by

GHZ and the demonstration that GHZ also works as a
KS theorem should liberate future generations of stu-
dents of the foundations of quantum mechanics from
having to cope with the geometrical intricacies of the
original KS argument.

Note, finally, how things go wrong when we try to cast
the Peres version of Kochen and Specker into the form of
a Bell-EPR argument. If the system is in the singlet
state, Einstein locality requires us to preassign values

m~, m, ,', m„', and m, to all the results of measuring ei-
ther the x or y component of the spin of either particle,
and these values are constrained by the relations
m„= —m„and m, ,

= —
m~,'. Einstein locality also re-

quires that the results of simultaneously measuring a,'
and a, , should be given by m„' and m,„and the results of
simultaneously measuring o,', and a„, by m,

' and m, . If
we were allowed to assign simultaneous values to the two
commuting observables a„'a~, and cr~', a, the chain would
be complete. On the one hand those values would have
to be m,'m, , and m, ,'m„whose product is 1. But on the
other hand the product (o,'o„,)(o,', a, ) is a-'a.- of which

the singlet state is an eigenstate with eigenvalue —1, so
the product of the results of simultaneously measuring
the two observables in the singlet state is necessarily —1:
a contradiction. But although it is legitimate to assign
values to both of these observables in making a KS argu-
ment, there is no reason to do so on the basis of Einstein
locality alone. Any procedure that simultaneously mea-
sures the commuting observables o„'a,, and o,', o„ for two
well separated particles must be highly nonlocal, so there

are no intuitive grounds for inferring from the perfect
correlations between the values such a measurement pro-
duces that Einstein locality requires each observable in-

dependently to have a definite value prior to the mea-
surement.

The 6HZ example does not encounter this obstacle
because the four nonlocal observables it considers
(cr,'a, , a~, , cr,', cr„cr, , cr,'cr, , o„an, d o„'cr„cr,) are mutually
commuting. They can therefore all be assigned definite
values by the appropriate choice of state vector, which
circumvents the inability to assign them values by an ap-
peal to Einstein locality. The four nonlocal observables

1 2 1 2 I 2in my version of the Peres example so,o„o;,o, o, o,
and cr,'. o„), however, are not mutually commuting, so no

choice of state vector can supply the missing link in the
argument. The crucial role played by the specification of
a state vector in the Bell-EPR argument is thus laid
bare.

I am indebted to Allen Stairs and Asher Peres for
sending me prepublication copies of their arguments, and
to Peres for an enlightening electronic-mail correspon-
dence in response to my initial reaction that his beautiful
example was wrong. I am grateful to Abner Shimony
for teaching me more of the history of the subject, and
insisting that I characterize accurately the full power of
the Gleason-Bell-KS results. But like others who puzzle
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over the meaning of quantum mechanics, I am obligated
most of all to John Bell, whose insight, wit, and moral
fervor we shall all sorely miss.
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