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Semiclassical Theory of Localized Many-Anyon States
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We study the bound-state spectrum of many particles obeying fractional statistics (anyons) in a two-
dimensional system in the presence of an external potential and a large magnetic field 8. As a function
of 8, there occur periodic recurrences of quantized states at fixed energy. For fixed particle number, the
period is determined by the fractional charge, while at fixed chemical potential, the fractional charge is

masked by the fractional statistics. %'e discuss the relevance of these results to recent experiments in

quantum Hall devices, and we propose a simple extension of these experiments which could measure the
fractional statistics.

PACS numbers: 05.30.—d, 67.90.+z, 73.20.Fz

Because the configuration space of a two-dimensional

gas of identical particles is multiply connected, it is pos-
sible to define' a consistent quantum theory in which

the particles ("anyons") obey fractional statistics inter-
mediate between Bose and Fermi statistics. Such parti-
cles are characterized by the statistical angle 8* which is

the phase change of the wave function when one particle
traverses a path which encloses another in the clockwise
direction; 8* =0(mod4tr) corresponds to Bose and
8* =2tr(mod4tr) to Fermi statistics. In particular, in the
fractional quantum Hall state, the quasiparticle excita-
tions are believed to have fractional charge' e* =e/m,
and corresponding fractional statistics 0* =2tr/m;
indeed gauge invariance implies that a connection of this
sort between charge and statistics must occur whenever
fractionally charged quasiparticles occur.

Fractional statistics greatly complicate the solution of
the many-body problem, and even the several-body prob-
lem, due to the long-range nature of the statistical in-

teraction. In particular, although for noninteracting bo-
sons or fermions the many-body wave function can be
constructed as a product of solutions of the one-body
problem, this is not the case for particles with intermedi-
ate statistics. Thus, even the problem of multiple, nonin-

teracting anyons is nontrivial.
Semiclassical methods provide a simple and physically

transparent method for understanding bound states of
complicated systems. In two dimensions in the limit of a
large magnetic field B, when the cyclotron energy,
hco, . =heB/Mc (M is the particle's efl'ective mass), is

large compared to the potential energy, all low-energy
states are restricted to lie in the lowest Landau level.
The remaining dynamics of the particles involves only
the guiding-center motion, and hence is independent of
M. The quantum theory of the guiding-center dynamics
can be expressed in terms of a coherent-state path in-

tegral; the semiclassical theory is then the first term in

an asymptotic expansion in powers of (I/R), where l is
the Landau length, I'=go/2trB, go=bc/e is the flux

quantum, and R is the length scale characteristic of
changes in the potential energy. Extensive comparisons

have been made between semiclassical expressions
and exact numerical solutions of model problems in the
high-field limit, and the semiclassical theory has been
found to be remarkably accurate.

In particular, we have in mind obtaining a more de-
tailed understanding of the recent experiments of Sim-
mons et al. on narrow quantum Hall devices which have

yielded the first direct experimental evidence of the ex-
istence of well-defined quasiparticle excitations with

fractional charge. In these experiments, periodic oscilla-
tions of the longitudinal resistance p„„were observed as
a function of magnetic field near the edges of various

quantum Hall plateaus. For the integer plateaus, with

Hall conductance o, , =(e /h)v, where v=1, 2, 3,4, the
period of the oscillations in p„,- was found to be roughly
independent of v, while for v= —, , the period was 3 times

as large as for integer v. A simple explanation for this
observation is suggested by considering the semiclassi-
cal bound-state spectrum of a single particle of charge
e* in a smoothly varying external potential. If there ex-
ists a bound state with energy EF at some value of the
magnetic field B, then when the magnetic field is B+hB
there again exists a state with the same energy provided

AB =p*/2trA (Et ), - (I)
where &*=bc/e* is the eff'ective flux quantum, and
A(E) is the area enclosed by the equal-potential contour
with energy E. Thus, if A(EF) is approximately in-

dependent of magnetic field, and if the period of the
resistance oscillations in p„- is determined by this reso-
nance condition, then the resistance oscillations are sen-
sitive only to the charge of the quasiparticle which is
e* =e for any integer plateau and e*=e/3 for the
state. '

There is an apparent paradox implicit in Eq. (1): The
quantization condition is superficially reminiscent of the
behavior of a system with an Aharonov-Bohm geometry,
in which magnetic flux is passed through a region of the
system which is inaccessible to the particles. The fact
that, at a microscopic level, the system is composed of
electrons with charge e, implies that, in a true
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Aharonov-Bohm experiment, all properties of the sys-

tem ' ' must be strictly periodic functions of the flux

through the hole with period pp. Since for e*= —, we

have pp (p, this periodicity would appear to be incon-
sistent with the observation of a p* periodicity of the
resistance. We will find that there is no paradox; the ex-
periment does not measure the Aharonov-Bohm eflect.
In particular, Eq. (1) was derived under the condition
that there is only one quasiparticle in the system. '

Thus, the entire region enclosed by the quasiparticle or-
bit must be covered by condensate which is afl'ected by
the magnetic field. We will show that as a consequence
of the fractional statistics of the quasiparticles the ex-
pected pp periodicity of observable quantities for
Aharonov-Bohm conditions emerges from the many-
particle generalization of Eq. (1). The same analysis al-

lows us to suggest a simple generalization of the experi-
ment of Simmons et al. which will permit the direct ex-
perimental verification of the fractional statistics of the
quasiparticles in the fractional quantum Hall state.

Classical equations of motion. The —semiclassical
theory starts with the classical equations of motion for
the guiding-center coordinates which describe the motion
of the particles in the lowest Landau level:

0=er, & B/c —VV(r, ),
where B=Bz, and V(rt) is the total potential energy at
the location rj of the jth particle, i.e., the sum of the
external potential U(r, ) plus the interaction potential
with all the other particles, v(r, ),

V(r, ) =U(ri)+ g v(r, —rq) . (3)
kwj

The equations of motion are independent of the particle
statistics. The total potential energy is a constant of the
motion. For noninteracting particles (v=0) each parti-
cle moves along an equal-potential contour with energy
U(r, ) =e, . These equal-potential contours, and hence
the classical trajectories, generically consist of closed or-
bits. Classical bound states occur in the neighborhood of
local minima of the potential, which is unsurprising, and
in the neighborhood of potential maxima. It is important
to note that in the neighborhood of a given extremum of
the potential, the classical bound states can be ordered
such that trajectory j is strictly inside (closer to the ex-
tremum) than trajectory j+1; for a potential maximum
this implies Gj+] K Ej.

Semiclassical quantization of noninteracting anyons—The Bohr-Somrnerfeld quantization condition for
periodic orbits requires that the classical action is an in-

teger multiple of h. Semiclassical quantization repro-
duces the Bohr-Sornmerfeld condition but with an addi-
tive shift due to the phase of the fluctuation deter-
minant. ' In the large-8 limit there are two contribu-
tions to the action: an Aharonov-Bohm contribution and
a statistical contribution. These two contributions are
similar in form since it is possible to treat the fractional

statistics as an Aharonov-Bohm interaction as if the par-
ticles were bosons with a flux p„,, =(8*/2z)p* tied to
each particle.

To begin with, we consider quantizing the classical
bound states associated with a single extremum of the
potential U(r), which for concreteness we take to be a
potential maximum. Since the particles are noninteract-
ing, there is a separate quantization condition for each
particle

2trn) =2trBA (e, )/y* —(j—I )0* —&p, (4)
where nj is an integer, ej are the one-particle energies,
A (e) is the area of the equal-potential contour of energy
~, j —

1 is the number of particles enclosed by the trajec-
tory of particle j, and Oo=z is the contribution to the
phase from the fluctuation determinant [see Refs. 7(b)
and 7(c)]. Thus, an N-anyon state is specified by a set
of N occupied orbitals which satisfy Eq. (4). This is our
principle theoretical result. The total energy E of the
N-anyon state is simply the sum of the single-particle en-

ergies

(5)
We have derived Eq. (4) using the Bohr-Sommerfeld
quantization condition with a correction term I90 included
to obtain the correct semiclassical result for the single-
particle problem. In a forthcoming paper, we will show
that Eq. (4) can be rederived from an asymptotic
analysis of certain exactly solvable cases.

To check the accuracy of the semiclassical quantiza-
tion prescription, we compare the results with other
known results. First, we note that for fermions, 0* is 2z
and hence the statistical interaction can be absorbed into
a redefinition of n;, and for bosons 0* =0 so the statisti-
cal interaction is nonexistent; in both cases the statistical
interaction results in no shift in the one-particle states.
This is a correct and remarkable feature of noninteract-
ing fermions and bosons. Second, we compute the max-
imum density of anyons that can be accommodated in a
region of space in the lowest Landau level. To compute
this at the semiclassical level, we consider the state yo
with n, =0 for all j. Since n, ~ 0 must be a nondecreas-
ing sequence in order that ej be an increasing sequence,
it follows that yp is the highest-density state allowed by
the quantization conditions. Its density in units of the
flux density is

Ndp 2trN (6)
(e/e*) [tr+ (N —1)0*]

The exact result is' v„, =(e*/e)(2tr/0*), in agreement
with Eq. (6) for large N.

Periodicity of the bound state spect-rum Consider. —
the bound states in the vicinity of a single extremum of
the potential and imagine trying to add a particle at a
fixed energy EI;. As we vary the magnetic field, there
will occur a series of special "resonant" values of the
magnetic field at which this is possible, just as in the
one-particle case summarized in Eq. (1). We wish to
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compute the magnetic-field interval between successive
resonances.

To begin with, consider the case in which initially the
system is in an (N —I)-particle state in which all the
particles are bound to potential contours that lie inside
the contour with U(r) =EF. In this case, it is possible to
add one more quasiparticle with energy EF if and only if
there is a solution to Eq. (4) with j=N and e, =Er If.
this condition is satisfied for some value of the magnetic
field 8 and particle number N, then it will also be
satisfied for another value of 8' and N', where

gg
8 8'=(N——N') " +n

2@A (EF ) A (EF)
(7)

and n is an integer. Note that for quasiparticles in the
fractional quantum Hall state, O*p*/2tr =Ho, so the first
term has period po/A while the second has period p*/A;
if the number ofparticles is held fixed, the ejfecti ve flux
quantum determines the periodicity, while if the number

of particles is allowed to vary, the bare ji'ux quantum
determines the periodicity.

In the more general (N —1)-particle state, not all the
particles lie inside the contour U(r) =EF If som. e parti-
cles are in orbits which enclose this contour, the com-
plete set of coupled equations (4) and (5) must be solved
since the addition of a particle to this contour shifts the
energies of all one-particle states which enclose it.

Perturbative egect of interactions The cla.s—sical dy-
namics of many interacting particles is quite complicat-
ed, even if they obey guiding-center equations of motion,
Eq. (2). We can, however, incorporate the eA'ect of
weak interactions in first-order perturbation theory since
to this order the interactions do not change the states,
simply the energy. In this case, the quantization condi-
tion, Eq. (4) remains unchanged but the many-body en-

ergy becomes

E=ge, + g vi, (g)
j I+I

where v„ is the interaction energy" between particles i
and j. The energy to add one particle in the outermost
orbit remains e, , even in the presence of these interac-
tions, so Eq. (7) remains valid.

Application to experiments in narrow quantum Hall
devices It was n.o—ted in Ref. 9 that the longitudinal
resistance p„,- of a narrow quantum Hall device can be
used as a spectroscopic probe of the quasiparticle bound
states in the bulk of the sample. In narrow samples, the
Hall current is carried by edge states, and p„ is deter-
mined by the interedge scattering rate. So long as the
distance between edges is large compared to the Landau
length, the scattering rate is astronomically low; p,-, =0.
If there is a weakly localized state in the bulk with ener-

gy near the Fermi energy and with an extent comparable
to the width of the sample, scattering between edges
through the localized state is far more likely than the
direct process. As the magnetic field is varied, the ener-

gy of the localized states changes according to Eq. (4),

and hence a periodic variation of the bound-state spec-
trum would be expected to produce a corresponding
periodic variation in p„-.

In Refs. 16 and 9, we considered the possibility of res-
onant scattering, in which a quasiparticle scatters
coherently from one edge to the other, and only makes a
virtual transition to the localized state. As discussed in

Ref. 16, when resonant scattering is the dominant pro-
cess, one should observe very sharp peaks in p, as a
function of 8 whenever the resonance condition is

satisfied. In the data of Simmons et al. , rather sharp
peaks are observed at the edge of the v=2 plateau,
which may be due to resonant tunneling. In the rest of
the data, the periodic structure is less sharply peaked
and is di%cult to reconcile with resonant tunneling.

An alternative source of oscillatory behavior as a func-
tion of the bound-state spectrum is provided by the pro-
cess pictured in Fig. 1(a). Here, we show a picture of a
narrow quantum Hall device in cross section. The left
edge states carry current in the direction out of the page
and the right edge states carry current in the opposite
direction. There is a net current due to the fact that the
chemical potential on the left pL is greater than that on

the right pg. In the bulk of the channel, there is a po-
tential mountain of height V,, „, also seen in cross sec-
tion; the solid dots indicate the positions of the quantized
orbits for possible single quasihole states bound to this
mountain. Without loss of generality, we have chosen
the mountain to be closer to the left edge of the sample
than to the right, so on the time scales of interest the
bound states associated with this mountain are in chemi-
cal equilibrium with the left edge; at temperature T=O
there are essentially no holes in bound states with energy

(a)

(b)

FIG. 1. Cross-sectional views of a Hall channel with a po-
tential mountain near the left edge. The solid circles corre-
spond to quantized single-particle bound states that are occu-
pied by quasiholes and the open circles are unoccupied states.
The situation (a) in which pl ) V „&pR and (b) in which
~m..& Pl & P ~ a«&T =2.
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less than pl, which we have taken to be greater than the
height of the potential mountain. The rate-limiting pro-
cess which determines p, „ is tunneling from the localized
state to the right edge. Alternatively, this process can be
described as tunneling of a hole from the right edge to
the bound state. This can occur at any energy greater
than pp for which a quantized bound state exists, but
since the probability decays exponentially with distance
between the bound state and the edge R(e), it is clear
from the picture that R(a) & R(tttt) for e& ptt, so the
process is dominated by the states with energy closest to
pR. Since, by the same token, the equilibration rate of
the bound states with the left edge is much faster than
with the right edge, only the zero- and one-quasihole
bound states are relevant. Thus, we assume hE
»h/rL»h/rtt, where /JE is the spacing between bound
states and lt/rR and h/rt are the tunneling rates from

the left and right edges, respectively. In this case, the
I/rL, and hence p„„, depend on R(eR), where en is the
energy of the quantized bound state with energy closest
to pR, therefore p„„will have periodic structure with

period determined by Eq. (I) with EF =Jttt.
The situation is richer if we consider a system with the

same geometry, but with a somewhat smaller value of
pL, as shown in Fig. 1(b). Again, assume that, on the
relevant time scales, the bound states are in chemical
equilibrium with the left edge states. Thus, p„„ is deter-
mined by the transition rate between quasihole states
which consist of a fixed number NT of quasiholes near
the top of the mountain associated with potential con-
tours with energies greater than pL, and zero or one
quasihole in a bound state with energy near pR. In this

situation, three sorts of eft'ects should be observable in

the variation of p„, as a function of B: (I) p,-„should
exhibit a periodic sequence of peaks with a short period

lJ.Bi =4*/2trA(pR) (9a)
reflecting the variation of the quantization condition on

the quasiparticle bound state with energy —pp at fixed

Nr. The period is short because A(pp) is relatively

large; as before, this effect is a measure of the fractional
charge. (2) Because of the long-range nature of the sta-
tistical interaction, a shift in the number of quasiholes
near the mountain top will produce a shift in the large
quantized orbits with energy near pp., when 1VT NT
+1, the pattern of peaks shifts by a fraction 0*/2n of
the period AB~. According to Eq. (4), Nr will increase

by WT NT+1 every time the flux through the poten-
tial contour with energy JtL increases by &*0*/2tr =pp.
Thus, there should appear sudden shifts in the phase of
the periodic variation of p„every time 8 changes by

/J. B2 =Pp/2trA (tt t ), (9b)
which is much longer than lJB~ since A(pt)((A(pR).
(3) The addition of 2tr/0* quasiparticles to the top of the
mountain (NT NT+2tr/0*) results in a shift of the
pattern of peaks by a full period, hB~. p,-, should there-

fore exhibit a second period, hBi =(2tr/0*)tt B2. Obser
vation of either of these latter two effects would consti
tute the ftrst direct measurement offractional statistics
Finally, in real systems, there should be an efIect of the
direct Coulomb interaction between the particles at the
top of the mountain and the large bound state, which
will be small so long as A (pt ) is sufficiently large. This
results in a small change in the bound-state spectrum
whenever NT changes by 1 and a slight deviation from
perfect periodicity with the longer interval, 883.
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