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Invariant Measure of a Driven Nonlinear Oscillator with External Noise
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The effect of external white Gaussian noise on the invariant measure of a periodically driven damped
nonlinear oscillator is studied by solving for the first time the full three-dimensional Fokker-Planck equa-
tion by numerical means. We critically discuss and interpret deterministic concepts and stochastic no-

tions in the presence of noise and chaos.
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It is well known, that periodically driven nonlinear os-
cillators exhibit deterministic chaos.! For systems with
dissipation—but without fluctuations—the driving am-
plitude has to exceed a certain homoclinic threshold? in
order that the solution becomes chaotic and a strange at-
tractor builds up. For Hamiltonian systems with more
than one degree of freedom, local chaos shows up for
every finite driving amplitude,® while the transition to
global chaos occurs at a certain threshold value of the
driving amplitude. In spite of considerable progress in
understanding the chaotic behavior and the routes to
chaos in isolated systems like those mentioned above,
there is only little knowledge on the impact of those re-
sults for more realistic models which include dissipation
and fluctuations. The influence of noise on a driven non-
linear oscillator may be described in terms of a Langevin
equation, i.e., the differential equation for the driven os-
cillator supplemented by a stochastic force.® Assuming
this stochastic force to be § correlated and Gaussian dis-
tributed (Gaussian white noise), the Langevin equation
is statistically equivalent to a two-dimensional Fokker-
Planck equation (FPE) with a periodic drift coefficient.’

Fokker-Planck equations are linear partial differential
equations of first order in time for the probability distri-
bution regardless of whether the trajectories of the deter-
ministic system show regular or chaotic behavior. A
similar situation arises in the discussion of quantum-
mechanical properties of classically chaotic systems.®
There, the Schrodinger equation is a linear partial dif-
ferential equation for the probability amplitude and thus
the wave functions are periodic or at most quasiperiodic
in time, although the classical trajectories may exhibit
chaotic behavior. In our system the situation is even
more complicated, since the generator of a Markovian
stochastic process (the Fokker-Planck operator) is gen-
erally a non-Hermitian differential operator and thus the
spectrum—or the Floquet spectrum for periodically
driven systems—is generally complex valued. The goal
of this paper is the discussion of properties of the solu-
tion of the FPE which are characteristic for determinis-
tic chaotic behavior.

The influence of weak noise has been studied for dis-
crete maps’ as well as for Hamiltonian systems® by util-
izing path-integral methods. The influence of periodic

driving on a bistable Duffing oscillator has been studied
recently within an inverse system-size expansion.’ This
method, however, is valid only for short time intervals
compared to the inverse of the largest positive Lyapunov
coefficient and for weak noise. Thus, on a chaotic attrac-
tor only transient properties of the stochastic systems are
described correctly by the inverse system-size expansion.
In this paper we consider the influence of generally
nonweak noise on a driven nonlinear oscillator in regular
as well as in chaotic regions. The particular system un-
der investigation is a shunted Josephson junction exposed
to coherent microwave radiation.'® The equation of
motion for the phase difference between the macroscopic
wave functions of the superconductors is given within the
resligtlilvely shunted junction model in dimensionless units
by ™
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Here F is proportional to the dc part of the bias current,
Q and A are the frequency and the amplitude of the mi-
crowave field, respectively, and &(¢) denotes white
Gaussian noise with zero mean, i.e., (£(¢)&(¢'))=2D5(t
—1'), (E@)) =0.

The Langevin equation (1) is statistically equivalent to
the two-dimensional (x =g, v =¢) nonstationary Marko-
vian stochastic process generated by the Fokker-Planck
operator
62
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Equivalently, we may consider the three-dimensional
stationary Markovian process, generated by the Fokker-
Planck operator
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It follows from Floquet theory'? that the asymptotic
long-time solution P,(x,v,t) of the Fokker-Planck
equation, P(x,v,t) =L,P(x,v,t), is periodic with period
T=2n/Q. The stationary solution W (x,r,8) of the

(3)
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FPE, W(x,v,0,t1)=L:;W(x,r,6,1), is identical to (1/
27)P,(x,v,1), if O is substituted by Q¢ (see Ref. 12).
The 6-averaged stationary distribution function, W, (x,
v)=[§"W(x,v,0)d6, is thus identical to the time-
averaged probability density P, (x,0)=(1/T)[{P,s(x,
v,1)dt. In the noiseless case (D =0) this probability den-
sity is given by the invariant measure and can be ob-
tained by solving the deterministic differential equation
numerically. The time-averaged probability density
P..(x,v) is thus the generalization of the deterministic
invariant measure, i.e., it represents the noisy invariant
measure.'? Noisy invariant measures and their shapes as
a function of the noise strength have been discussed thus
far for discrete maps'* only.

Before we discuss the numerical solution of the FPE’s
above, some general remarks on the time dependence of
the invariant measure are necessary. In the limit of zero
noise (D— 0), the FPE generated by L, is reduced to
Liouville’s equation. For an initial § function on phase
space the solution remains a & function following the
deterministic trajectory forever; i.e., the dynamics of the
solution may be chaotic. For an initial probability which
has a finite width (but still without noise), the probabili-
ty density changes its shape in the the course of time and
approaches a time-periodic probability distribution for
large times with the period of the driving frequency.
This follows from the existence of an invariant measure
on any Poincaré cross section. Therefore, possible peri-
od-doubling scenarios and irregular behavior for proba-
bility distributions are generically (with or without
noise) only transient properties of distribution functions.

In contrast to other work,'? where the Langevin equa-
tions have been solved via numerical simulations, we
solve the corresponding three-dimensional FPE Wi(x,v,
0,t) =L;W(x,v,0,t) with the matrix-continued-fraction
technique'® in order to obtain the most precise results.
The probability distribution W{x,v,0,t) is expanded into
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FIG. 1. The noise-invariant measure in x for y=0.5,

=-—0.5, @=1, and A=1 for decreasing noise strengths, i.e.,
D=1 (long-dashed curve), D=0.1 (short-dashed curve),
D=0.03 (solid curve), and the deterministic invariant measure
(dotted curve).
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complete sets with respect to x (trigonometric func-
tions), v [Hermite functions w,(v)], and 6 (trigono-
metric functions), i.e.,

W,e,0,0)=yo(®) Y, X X "y, ()

n=0m=—oco k= —o0
xexplikx +in8) .
4)

The coefficients are ordered into column matrices in such
a way that we obtain a tridiagonal vector differential
equation of first order in time. For the stationary distri-
bution W (x,v,0) the tridiagonal vector recurrence rela-
tion is solved in terms of matrix continued fractions.
The asymptotic time-dependent probability in x, P,s(x,
1), is obtained by integrating Wy (x,r,0) over v, while
the time- (or equivalently phase-) averaged probability
P.(x), i.e., the noisy invariant measure in x only, is ob-
tained by performing an integration of W (x,r,8) over v
and 6.

The result for y=0.5, A=1, and Q =1 is shown for
decreasing noise strength D in Fig. 1. The multipeaked
structure for small D, which turns out to be typical for
deterministic chaotic behavior, is washed out for increas-
ing noise strength. In Fig. 2, the noisy invariant measure
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FIG. 2. The noisy invariant measure for D=0.05 (solid
lines) is compared against the deterministic invariant measure
(dashed lines) for F=—0.5, y=0.5, and Q=1 (a) below
homoclinic threshold, i.e., 4=0.8, and (b) above homoclinic
threshold, i.e., A=1.
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for D=0.05 is compared with the invariant measure of
the deterministic system below [2(a)] and above [2(b)]
the homoclinic threshold. The invariant measure of the
deterministic system as well as the noisy invariant mea-
sure develop multipeaked structure above the homoclinic
threshold. The smoothing of the multipeak structure in
the presence of noise, however, is not uniform in x.
Some peaks at x <0, for instance, are not visible with
noise, while even smaller details are clearly visible else-
where. This is an indication that the sensitivity to noise

2r oo 2n
H(W(x,v,B,t))———‘f0 f_mﬁ) P(x,0,0,0)InP(x,v,0.t)dxdvdd.

For short to intermediate times (which is :he range of
validity of the calculations in Ref. 9) the functional H is
mainly determined by the specific choice of the initial
probability distribution and is thus not characteristic for
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FIG. 3. The altitude charts of the two-dimensional invariant

measure P, (x,v) are shown for F=0.5, y=0.5, and @ =1 at

(a) A=0.5 and (b) 4=2.75. The solid lines are probabilistic

equidistant, while the dotted lines, corresponding to smaller

probabilities, are not equidistant. The plus signs denote maxi-

ma of the probability distribution, the minus signs minima, and
the solid circles denote saddle points.

is different in different regions of phase space. The tran-
sition from a smooth to a multipeaked invariant measure
for noisy systems is, however, not as sharp as compared
with the deterministic case. The transition to a mul-
tipeaked structure starts already for smaller values of A4
as compared to the deterministic homoclinic threshold
value.

Having computed the noisy invariant measure one is
led to the question of how the system approaches the in-
variant measure in the course of time. This dynamical
information is contained, for instance, in the functional

()

the system. For large times, the time dependence of the
functional H is determined by the smallest nonvanishing
eigenvalue of the Fokker-Planck operator (3). Our nu-
merical calculations for those eigenvalues at intermedi-
ate noise strength, however, do not indicate a significant
transition at a certain value of the field strength A.

Finally, we consider the two-dimensional invariant
measure in velocity-position phase space P,.(x,v), which
is defined above. In Fig. 3, the two-dimensional invari-
ant measure is plotted in the slightly underdamped re-
gime, y=0.5, @ =1, D=1, and F=0.5, for 4=0.5 and
A=2.75. Again a transition from a smooth invariant
measure to a more structured invariant measure for
D=1 (characterizing a large noise strength) takes place
at a certain value of the modulation strength.

With the numerical results above, we can address
again the question of how chaos enters into the statistical
properties of a periodically driven noisy nonlinear oscilla-
tor. The temporal evolution of a distribution function is
in contrast to that of a single trajectory, not chaotic but
strictly periodic at large times. In the presence of noise,
the dynamics of single trajectories clearly does not repre-
sent an appropriate characterization of the system. The
notion of invariant measure, however, can be discussed in
noisy systems within a Fokker-Planck description. The
noisy invariant measure shows a significant topological
transition, when the deterministic trajectories become
chaotic. A similar behavior has been observed in
quantum-mechanical systems which are chaotic in the
classical limit: The Husimi representation'® of a wave
function undergoes in the limit #— 0 a complicated to-
pological change if the classical limit is chaotic.'’
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