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Quartz undergoes a gradual transition with pressure from a crystalline to an amorphous state. The
mechanism for this pressure-induced transition is not well understood. By combining new experimental
pressure data and recently developed theoretical methods, we have determined the structural properties
of a-quartz near and above this transition. We suggest that highly unfavorable interpolyhedral anion-
anion distances, which occur at the transition pressure, play a key role in driving the transition.

PACS numbers: 64.70.Kb, 61.50.Lt, 62.50.+p, 64.30.+t

One of the most difficult materials to describe theoret-
ically is SiO,. The bonding in this material is complex.
The Si-O bond combines strong ionic and covalent bond-
ing, and lone-pair oxygen orbitals are present. More-
over, SiO; occurs in a wide variety of forms with only
small energy differences between the forms. Thus, it
may not be too surprising that SiO, also exhibits an
unusual order-to-disorder transition under pressure.! At
~30 GPa, a-quartz undergoes a gradual transition from
a crystalline to an amorphous form. Hazen et al.’ have
interpreted their pressure measurements on a-quartz as
providing evidence for the onset of amorphization at
~15 GPa. Such transitions also occur in other oxides,
e.g., in water’ and AIPO4* In AIPO, the problem is
compounded by a glass “memory” phenomenon. Upon
the release of pressure, the glass form of AIPOy reverts
to the previous crystallographic orientation of the crystal
from which it forms.*

Here we concentrate on SiO; in the a-quartz struc-
ture. This structure is dominated by tetrahedral units of
silicon surrounded by four oxygen atoms. A common in-
terpretation is that these tetrahedra are loosely preserved
as a function of pressure; however, the orientation of the
tetrahedra and their role in the order-disorder transition
are not well understood. Several structural studies®>"
of a-quartz exist as a function of pressure, but these
studies become increasingly unreliable near the transi-
tion. Moreover, while theoretical methods'*™'® have
been applied to the structural properties of SiO, as a
function of pressure, these methods have often concen-
trated on molecular analogs as opposed to the crystalline
state.3"'® A few solid-state calculations exist,'>'"""* but
these have been limited to examining the electronic prop-
erties, or ambient-pressure structures.

In this work, we employ recently developed pseudopo-
tential methods to describe the subtle changes in the
structure of a-quartz as a function of pressure. The only
input into our calculations are the atomic number of the
species present and the crystal symmetry. This pro-
cedure, while computationally intensive, has the advan-

tage of including the many-body forces and hybridiza-
tion changes as a function of pressure directly via
quantum-mechanical calculations. We find that we are
able to predict the subtle angular and bond-length
changes with pressure in a-quartz which are consistent
with the best experimental measurements to date. In ad-
dition, we can describe the structure of a hypothetical
crystalline material at pressures considerably above the
order-disorder transition. The theoretical structural
properties for a-quartz above the transition can provide
us with insights which cannot be obtained experimental-
ly.

A key difficulty in describing the structural properties
for a-quartz is that the unit cell is large for ab initio cal-
culations. It contains three molecular units of SiO,.
Also, the oxygen potential is difficult to describe with a
weak pseudopotential as oxygen has no p states with the
ion core. No orthogonality condition exists for the p
states and the oxygen potential for this component is
much stronger than for the corresponding s states. In
such situations, local bases such as Gaussians are often
employed. These bases usually result in rather compli-
cated matrix elements and are computationally cumber-
some. Here we use newly developed pseudopotentials
which allow the use of a plane-wave basis. Our pseudo-
potentials were generated self-consistently within the
local-density approximation using the method of Troul-
lier and Martins.?’ This method produces a “soft” pseu-
dopotential. The Troullier-Martins pseudopotential al-
lows the description of “localized” states such as the oxy-
gen 2p states with a plane-wave basis. The oxygen pseu-
dopotential was generated from the atomic 2s22p*
ground-state configuration with radial cutoffs of 1.45
a.u. for both the s and p components of the potential, i.e.,
within this radial cutoff the “pseudo”’-wave function may
deviate from the all-electron wave function for the atom.
The oxygen d component was neglected owing to its high
energy relative to the atomic 2s and 2p valence states.
For silicon, s, p, and d components of the potential were
included. The radial cutoff for all three components was
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taken to be 1.80 a.u. We also incorporate a Kleinman-
Bylander separation?' in evaluating the required matrix
elements.

The one-electron Schrodinger equation was solved us-
ing a fast iterative diagonalization technique.?> One of
the major advantages of this method is that it does not
require a calculation of the full Hamiltonian matrix.
Rather only Hy is calculated, leading to a dramatic
reduction in storage and a considerable reduction in
computational time. Plane waves with an energy cutoff
of 64 Ry were included in the basis set. Typically, 6700
plane waves were used in the basis. Increasing the cutoff
to 144 Ry altered the total energy by less than 0.1
eV/(molecular unit). The structural parameters con-
verge more rapidly than the “absolute’ energy. We used
one special k point to evaluate the total electronic ener-
gy. The energy change from one special point versus
three k points was less than 0.01 eV/atom. This is not
surprising given the large unit cell of a-quartz and the
large band gap for this material.

With respect to the experimental determination of
structure, previous work has been carried out by Levien,
Prewitt, and Weidner® and Hazen et al.? However,
their work was limited in pressure range and accuracy.
We concentrate on the recent work of Glinnemann et
al.> who made measurements to 10.2 GPa. The mea-
surements of Glinnemann et al. were made on a small
single-crystal sample enclosed in a diamond-anvil cell.
The cell design and equi-inclination x-ray-scattering
geometry allowed higher pressures while maintaining
high precision. The conventional crystallographic quali-
ty factors (R’s) obtained from the least-squares structur-
al refinements were approximately 2.5%. Consequently,
the lattice and internal structural parameters are well
determined.

Determining the theoretical structural properties of
SiO; in the a-quartz structure is complicated by the
number of structural parameters. The a-quartz struc-
ture has hexagonal Dj symmetry and contains three
molecular units of SiO,. Each SiO, tetrahedral unit is
bridged via Si-O-Si bonds to neighboring tetrahedra. To
define this structure, the lattice constants (c¢,a) and four
internal parameters (u,x,y,z) must be specified.?® If we
fix a unit-cell volume, then the total electronic energy of
the solid is a function of five parameters, e.g., c¢/a,u,
x,y,z. Determining the structural parameters involves
minimizing a multiparameter total-energy function.
This is a primary reason for using interatomic potentials
based on molecular-orbital methods instead of comput-
ing the quantum-mechanical forces for the solid state.
Numerous evaluations of the forces must be made to in-
sure that a global minimum of the total energy has been
obtained as a function of the structural parameters. In
previous work, the quantum-mechanical forces have been
too complex to evaluate quickly enough for an accurate
search within the parameter manifold. However, our
pseudopotential-plane-wave method allows the rapid
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computation of forces. These forces were incorporated
in a method by Davidon to minimize the total energy.>*
Several starting configurations were used to verify that
the optimal structural parameters correspond to a global
rather than a local minimum. This method is very
efficient; however, the energy convergence required to
determine the final set of parameters is quite high.

In Fig. 1, we compare our calculated pressure-volume
relationship to experiment. We examined eight volumes
and determined the optimal internal structure for each
case. A Murnaghan equation of state was used to deter-
mine the equilibrium energy and volume, the compressi-
bility, and the derivative of the compressibility with pres-
sure. A Birch-Murnaghan form?’ yielded essentially the
same equation of state. The calculated cohesive energy
is 22.2 eV per molecular unit as contrasted to the experi-
mental value?® of 19.2 eV. Local-density calculations
generally overestimate the binding energy of a solid by
about 10% so an error of about 2 eV is not unexpected
for this system. We have included spin-polarized correc-
tions in the total-energy calculation, but not tempera-
ture. The inherent errors in local-density theory prob-
ably exceed any errors present in ignoring the role of
temperature. The structural properties determined by
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FIG. 1. (a) Calculated binding energy per molecular unit

for a-quartz. The energy is referenced to the free atoms. The
volume is per molecular unit. The curve is a Murnaghan fit to
the calculated points. (b) Equation of state for a-quartz. The
volume is normalized to the ambient experimental volume. Ex-
periment 1 is from Levien, Prewitt, and Weidner (Ref. 6). Ex-
periment 2 is from Glinnemann et al. (Ref. 5). Experiment 3
is from Hazen et al. (Ref. 2). The solid curve is the theoretical
Murnaghan equation of state from the fit in (a).
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FIG. 2. The minimum O-O interpolyhedral distance vs pres-
sure as predicted and measured for a-quartz. Experiments 1,
2, and 3 are as in Fig. 1(b). Inset: The O-O interpolyhedral
distance along with the Si-O-Si and O-Si-O bond angles. The
solid curve has been fitted to the calculated points.

local-density theory tend to be more accurate than the
cohesive energy as the cancellation of errors is expected
to be more complete. The equilibrium volume was com-
puted to be 35.8 A3 per molecular unit. The experimen-
tal value®>¢ is 37.9 A3. The experimental value®>° for
the bulk modulus is about 34-37 GPa as compared to
our theoretical value of 38.1 GPa.

The equation of state for a-quartz is consistent from
one experiment to another and with theory; however, the
internal structural parameters have been more conten-
tious. Some general features are well accepted. Under
pressure, the tetrahedral units initially remain unaltered
while the separation of these units decreases. In Fig. 2,
we show the predicted separation distance as a function
of pressure and compare to experiment. Illustrated is the
minimum O-O separation between oxygen atoms associ-
ated with different tetrahedral units. This O-O distance
changes from 3.4 A at ambient pressure to about 2.8 A
at 10 GPa. For comparison, the Si-O bond length is
hardly altered. At ambient pressure this bond length is
approximately 1.61 A. However, within 0.01 A the bond
length remains unchanged? at pressures less than 10
GPa. The theoretical bond length may even lengthen a
bit between ambient pressure and 10 GPa; the change in
length is less than 0.01 A. However, recent experimental
work by Hemley?’ does tend to confirm this prediction of
a lengthened Si-O bond at modest pressures.

In Fig. 3, the bond angles for the Si-O-Si and O-Si-O
angles are given and compared to experiment (see Fig. 2
for an illustration of the geometry). The theoretical cal-
culations are consistent with the experimental picture of
a-quartz under pressure. Namely, with increasing pres-
sure the tetrahedral O-Si-O angles show little variation
until about 8 GPa. Above this pressure, the tetrahedral
angles show considerable distortion from the ideal value
of 109.5°. For example, the predicted values for the
largest and smallest angles at 20 GPa are about 116°
and 104°, respectively. The bridging oxygen atom be-
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FIG. 3. (a) The Si-O-Si bond angle as a function of pres-
sure as predicted and as measured. The solid curve is a guide
to the eye; the calculated points are indicated by the solid cir-
cles. (b) The O-Si-O bond angles as a function of pressure as
predicted and as measured. Four distinct angles exist for the
a-quartz structure. The solid curve has been fitted to the cal-
culated points. Experiments 1 and 2 are as in Fig. 1(b).

tween the tetrahedral units forms very pliant bonds. The
variation of the Si-O-Si angle dominates the differences
between the various SiO; polytypes and among silicate
structures in general. This angle shows considerable
variation with pressure which is consistent with experi-
ment and the decreasing O-O interpolyhedral distance.
Previous theoretical work'® has not been able to yield
such an accurate description of these bond-angle changes
under pressure. Pairwise interatomic potentials have
been developed to describe the ambient phases of SiO,.
These potentials predict the Si-O-Si angle deviation un-
der pressure, but fail to account even qualitatively for
changes in the O-Si-O bond angles. These latter angles
are known to be strongly dependent on many-body, i.e.,
covalent, forces.

A natural question to ask is whether the order-disorder
transition pressure can be related to changes in bond an-
gles or lengths. Hazen et al.? have attempted to corre-
late strains in the Si-O-Si angle with this transition.
They use their data to extrapolate a value for this angle
at 15 GPa. The extrapolated angle is 120° or smaller.
Moreover, they note that molecular-orbital calcula-
tions'* indicate a sharp increase of the strain energy with
Si-O-Si angles below 120°. Coupled with their measure-
ments, they believe this calculation suggests that quartz
approaches an energetically unfavorable configuration
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above 15 GPa. The chief driving force is the small Si-
O-Si angle. We can test this suggestion with our
theoretical work and the previous measurements of a-
quartz under pressure. In Fig. 3, we plot the theoretical
Si-O-Si angle out to approximately 20 GPa. At 20 GPa,
this angle is approximately 125°. We predict that this
angle does not fall below 120° until a pressure of at least
~40 GPa, a pressure well above the order-disorder tran-
sition. Thus, our prediction is somewhat at variance with
the Hazen et al. ? suggestion.

While the bond-angle behavior may be in question,
there is no similar issue for the O-O interpolyhedral dis-
tance. It is common to use this distance as a fiducial
measure of the volume between the tetrahedral units.
One can use this distance as a guide to the “openness” of
the structure. Other O-O distances may be shorter, but
they correspond to oxygen atoms bonded via a Si atom.
Moreover, this distance is the most rapidly varying
structural parameter as a-quartz is subjected to pressure.
The experimental and theoretical data in Fig. 2 both
suggest that the distance is less than 2.75 A above ~15
GPa. This value of 2.75 A is significant according to Ze-
mann.?® Through an exhaustive search of the crystallo-
graphic literature, Zemann has concluded that the shor-
test known interpolyhedral distance in silicate materials
is 2.75 A and occurs in Be;SiOs. We note that at pres-
sures which exceed 15 GPa, the interpolyhedral distance
in a-quartz falls below the shortest known distance
occurring in nature. Thus, we suggest that the primary
driving force for the order-disorder transition may not be
the bond-angle deviation in a-quartz, but the unphysical-
ly short interpolyhedral distance which occurs above
~15 GPa. We also note that Sowa?’ has shown recently
that a geometric consequence of extending the trends ob-
served for the compression of a-quartz is a transition to a
body-centered-cubic arrangement of the oxygen anions.
While our calculations confirm such a trend, the high-
pressure phase remains significantly distorted from a
true cubic structure.

In summary, we note that this is the first ab initio
theoretical examination of a-quartz under pressure.
Only recently have theoretical methods developed to the
point of providing the accuracy and speed necessary for
this type of calculation. Because we can maintain the
symmetry of the crystal in our theoretical work, we can
investigate a-quartz above the amorphous transition.
Unlike experiment which may exhibit large scatter in the
structural parameters near the order-disorder transition,
we lose no accuracy in our theoretical parameters near,
or even far above, the transition pressure. We hope that
the detailed structural information of this work will pro-
vide deeper insights into the chemical bond as a function
of pressure, e.g., the role of the interpolyhedral O-O dis-
tance. Moreover, our work can serve as a standard by
which more approximate methods can be tested.
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FIG. 2. The minimum O-O interpolyhedral distance vs pres-
sure as predicted and measured for a-quartz. Experiments I,
2, and 3 are as in Fig. 1(b). Inset: The O-O interpolyhedral
distance along with the Si-O-Si and O-Si-O bond angles. The
solid curve has been fitted to the calculated points.



