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The effect of hydrodynamics on growth is studied by numerical simulation of two-dimensional phase
separation in a simple shear flow. The simulations are performed with a momentum-conserving lattice-
gas model of an immiscible binary fluid. The results reveal that an anisotropic anomaly that was previ-
ously observed in experimentally obtained structure functions is due to a shear-induced, smecticlike or-

dering of the domains.

PACS numbers: 64.60.Cn, 05.70.Fh, 47.20.Hw, 47.55.Kf

In this Letter, I present evidence of ordered patterns in
a numerical model of a system that is simultaneously
held out of equilibrium by external forcing and subjected
to a phase-separation transition by a deep quench. The
work is inspired by recent experiments performed by
Chan, Perrot, and Beysens' (CPB) in which a critical
binary mixture is subjected to a weak shear flow and a
thermal quench. The quench forces the system to under-
go spinodal decomposition, the process by which an ini-
tially unstable mixture separates into its constituent com-
ponents.?> As these domains grow, they additionally be-
come deformed due to the externally imposed shear.
This phenomenon— namely, the interaction of hydro-
dynamics and growth—has recently captured consider-
able attention, resulting in theoretical predictions,** nu-
merical simulations,>® and other experimental observa-
tions.” Here I focus on a particular result of the CPB
experiments: an unexpected anisotropy in the growing
domains that was revealed by light scattering. The
simulations reported in this Letter show this anisotropy
to be the result of a smecticlike ordering due to hydro-
dynamic interactions between domains.

To simulate a phase-separating binary fluid subjected
to a shear flow, I employ the immiscible lattice gas
(ILG),? a variant of the single-species lattice gas® intro-
duced for the simulation of the Navier-Stokes equations.
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Here p is the average number of particles per site, ¢ is
the average concentration of blue particles in the mix-
ture, pp(x,t) and p,(x,7) are the number of blue parti-
cles and red particles, respectively, at time ¢ at a site
with coordinates given by x, k is the discrete wave vec-
tor, and n, and n, are the number of lattice sites in the x
direction and y direction, respectively.

Figure 1(a) displays an ensemble average of 1500 in-
dependent realizations of S(k,s) at r=1000 time steps
after a deep quench. For these simulations, n,=n,
=128, d =p/7=0.7, and ¢ =0.33. Each simulation was
initiated with a two-dimensional homogeneous random
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e ™M lpy (x,1) = p, (x,0)] = pQc — 1} 2.

In the ILG, two species of particle, one “red” and the
other “blue,” reside in two dimensions on a triangular
lattice. Each particle has unit mass and can move with
unit speed from site to site. When particles meet, they
collide in a way that conserves mass, momentum, and
color. Collisions are designed such that, for sufficiently
large particle density d and minority concentration c, the
mixed phase is unstable, phase separation occurs, and
surface tension exists at interfaces. A phase diagram
analogous to a classical spinodal curve may be construct-
ed in the plane of d and ¢, where d is analogous to an in-
verse temperature.'® Importantly, in addition to acting
as a model of spinodal decomposition, the ILG also
simulates hydrodynamics. In particular, the hydro-
dynamic theory'' associated with the macroscopic be-
havior of single-species lattice-gas models applies equally
to the macroscopic behavior of single-color regions of the
ILG.® Detailed empirical studies additionally show that
capillary phenomena observed in the ILG correspond to
the behavior one expects from classical considerations,
for both interfaces at rest® and moving interfaces.'%'3

To further establish that the ILG is appropriate for a
study of sheared growth, it is imperative to first validate
its dynamical phase-separation behavior in the unsheared
case. The basic quantity of interest is the structure
Sfunction S(k,t), which is given for the ILG by the power
spectrum

(1)

mixture with negligible net momentum. In the spec-
trum, there is a faint trace of the hexagonal symmetry of
the triangular lattice'® for large |k| that should be insig-
nificant at long-wavelength, hydrodynamic scales. We
may thus conclude that the hydrodynamical aspects of
ILG phase separation are isotropic.

Isotropy of S (k) allows circular averaging over kK = k|
to form S(k). Figure 1(b) displays S(k,r), t=100,
200, ...,1000. If k,, is the value of k for which S (k) is
maximum, one expects that there is a scaling function
F(k/kp) such that®'?

S(k,t) = Ak, 2 () F (k/km (1)), (2
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FIG. 1. (a) Contours of logioS(k) at =1000 time steps
after quenching, in intervals of 102, S(k) is an average com-
puted from 1500 independent simulations. The highest contour
level (near center) is bold. (b) S(k,t) for =100, . .., 1000.
The maximum of each curve grows with time. (c) Scaled
structure functions A4 ~'k2(t)S(k,t) for t=100,...,1000.
Wave-number axes in (a) and (b) represent cycles per lattice
unit.

where A is a time-independent constant chosen to make
F(1)=1. Figure 1(c) displays the scaled structure func-
tions A4 "'k2(t)S(k,t) as a function of the time-de-
pendent inverse length scale, k/k,,(t); one sees excellent
adherence to the expected scaling. Moreover, the scaled
structure functions are shown to qualitatively conform to
a scaling function F recently proposed in Ref. 16.

To simulate sheared phase separation, plane Couette
flow is constructed in a manner inspired by Ref. 17; see
Fig. 2. On a lattice with L =n, lattice units in the verti-
cal direction and W=nx\/§/2=ny\/§ lattice units in the
horizontal direction, the average y velocity in the vertical
column located at x =0 is held at u, = —uo, while the
average y velocity in the middle column, located at
x=W/2, is held at u,=uo.'® By making boundaries
periodic in both directions, a V-shaped velocity profile,

_|Ccx—w/4), 0=x<W/2,
u = 3)

—Cx—3W/4), WNR=x<W,

is obtained, where the shear rate C =4uy/W.

Simulations of sheared growth are initialized with a
homogeneous random mixture of density d and blue con-
centration ¢, with a velocity profile given by Eq. (3). To
quantify the morphology of the resulting sheared
domains, the structure functions S(k) are calculated by
first computing the power spectrum S; (k) of the left
half of the simulation [i.e., by performing the summation
in Eq. (1) only for 0 <x < W/2], then computing the
analogous spectrum Sk (k) for the right half, and finally
averaging'’ the two by setting S(k)=1%I[S,(k)
+Se(—k)].

Results are shown in Fig. 3, where for each case
d =0.70, ¢ =0.35, n, =512, n, =256, and the viscosities
are equal. The top row illustrates the time evolution of
phase separation without shear (C=0). In the middle
row, the shear rate C =Cy=9.02x 10 ~* results from set-
ting u9=0.10, whereas in the bottom row C=1.5C,.
Different initial conditions were chosen in each case. In
both cases of shear, C is sufficiently small to correspond
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FIG. 2. Design of the numerical experiment (see text).

34 since the typical life-

to the case called weak shear,"
time of a fluctuation is ~1.%
Figure 3 illustrates a striking dependence of these two-
dimensional patterns on the shear rate C. For the case
C=0, one sees, as expected, circular bubbles whose
characteristic size grows with time while the number of
bubbles decreases. The cases C > 0, on the other hand,
show considerable deformation of the bubbles into ellip-
tical domains, in which the major axes of the ellipses are
oriented parallel to the direction that is approximately
45° from the vertical (flow) direction. This deformation
and orientation is expected from elementary theoretical
considerations:2' The bubbles are simply stretched along
the principal (extensional) axis of strain. A surprising
result, however, is the positional ordering of the bubbles
that is evident in addition to this orientational ordering.
Particularly at late times, the bubbles fall into ordered
stacks. The stacks themselves are separated at a dis-
tance A(¢) comparable to the length of the major axis of
the average elliptical bubble. Indeed, at late times a
“bubble wave” roughly proportional to cos[27ko(s)- x

t=3000, Ct=2.7

t=6000, Ct=5.4

R %N

x

FIG. 3. Patterns of the domains at two different times after
quenching. (a) No shear, C=0. (b) C=Cy=9.02x10"% (c)
C=1.5Co. Time ¢ is in time steps; Ct is shear strain.
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+¢] may be perceived, where the wave vector ko(?)
~x '(1)(£X—§)/V2 and ¢ is an arbitrary phase.
Here the minus sign of the unit vector X refers to the left
half of the simulation, and the plus sign to the right.

Further, and more convincing, evidence of these or-
dered structures is obtained from the structure functions.
Figure 4 contains contour plots of S(k,7) corresponding
to each late-time depiction of real space in Fig. 3; here,
however, each plot of S(k,z) was computed by averaging
over an ensemble of forty independent simulations. Two
features stand out when comparing S(k,z) for C>0 to
the corresponding S(k,r) for C=0. First, the spectra
are now elliptical in shape, rather than circular. Second,
there is a severe drop in spectral power in a direction
roughly aligned with the major axes of these elliptical
spectra. The former feature is expected: These ellipses
are simply the reciprocal-space depiction of the elliptical
bubbles in real space. The second feature is a quantita-
tive measure of the ordering of the bubbles in real space.
If the elliptical bubbles were randomly positioned, con-
tours of the spectral power in reciprocal space would be
unbroken ellipses. However, the appearance of the bub-
ble wave approximated by coslko(s)-x+¢] creates
anomalously large spectral power in the vicinity of
k= 1+ ko(¢) in reciprocal space. Because the total spec-
tral power X, S(k,t) is approximately?? a constant of
time, the creation of this large spectral component near
k= * ko(z) leads to a concomitant depletion of power in
the direction approximately orthogonal to it.

This dropoff of power near the major axes of the ellip-
tical power spectra was also observed in the analogous
light-scattering patterns obtained in reciprocal space in
the CPB experiments. Thus the CPB experimental ob-
servations lend additional credence to the ordered struc-
tures obtained in real space in the ILG simulations.

A simple argument offers insight into the physical pro-
cesses responsible for the generation of these ordered
patterns. Consider two identical elliptical bubbles in a
shear flow u, =Cx, both with major axes of length A
oriented at an angle 6 to the flow direction. The bubbles
are placed in the flow such that the line x =0 is halfway

kx kx kx
—-0.05 0 0.95 —-0.05 0 0.05 -0.05 0 0.05
t=6000 t=6000 t=4000
~qct=0 Ct=5.4 Ct=5.4 _
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FIG. 4. Contours of log0S (k) computed by averaging spec-
tra from 40 independent simulations. The contour interval is
10"2; the lowest contour in each plot is the same and the
highest contour in each plot is bold. Times ¢ and shear rates C
in (a)-(c) correspond to those of the real-space patterns de-
picted at the later time in (a)-(c), respectively, of Fig. 3. All
k, axes are scaled identically.

between their centers of mass. Thus one bubble flows at
velocity u, =vo while the other bubble flows at velocity
u, = —uvo. If the bubbles are separated in the x direction
such that 2C ~'vg> Asin#, they simply flow past each
other at velocity u, =2vo. However, if the bubbles are
sufficiently closely spaced such that 2C ~'vg<Asiné,
they interact significantly as they approach each other.
Specifically, if the bubbles are approximated by two flat
surfaces of length A separated by a distance A <A and
moving towards each other at speed h, then for phh/
u <1, lubrication theory?® shows that the rate of ap-
proach slows down such that Iimh3/uk3, where u is the
shear viscosity. Stacks of bubbles thus form by a succes-
sion of similar near collisions that are relatively frozen in
time. These stacks last until either (1) bubbles coalesce,
and begin to form a new stack at a larger scale, or (2)
the bubbles slide past one another due to the shear.

The uneven distribution of power in the elliptical S (k)
is thus a measure of the additional time during which
bubbles are “locked” in place as the shear flow causes
them to flow in each other’s path. Because a lower sur-
face tension o allows bubbles to become flatter upon mu-
tual approach, and a greater viscosity enhances the slow-
down in A, the ordering effect should increase as the
capillary number Ca=CApusin6/c increases. A compar-
ison of the two nonzero shear rates in Fig. 3 indicates the
effect of increasing Ca: Ordering is initiated at earlier
times due to greater deformation of the bubbles. In Fig.
3(b), Ca=0.2 at the later time, while in Fig. 3(c),
Ca=0.3.

Formally, the pattern of the sheared domains observed
here is analogous to the structure of certain smectic
liquid crystals.?* The patterns are ordered in the direc-
tion given by the wave vector ko, but relatively disor-
dered in the orthogonal direction. Qualitatively similar
ordered structures have been observed in simulations of
sheared colloidal suspensions?® but the time-dependent
behavior here is considerably different due to the con-
current phase separation. Unusual rheological proper-
ties, already indicated in Refs. 5 and 26, are expected
due to competition between capillary and viscous forces.
A preliminary study shows that the effective viscosity of
the phase-separating mixture displays a complex time
dependence in which the maximum excess viscosity is
coincident with the maximal ordering of the domains.?’
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FIG. 3. Patterns of the domains at two different times after
quenching. (a) No shear, C=0. (b) C=C,=9.02x10"* (c)
C=1.5Co. Time ¢ is in time steps; Ct is shear strain.



