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Direct Dynamical Calculation of Entropy and Free Energy by Adiabatic Switching
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If an ergodic Hamiltonian is changing slowly in time, its energy shell is an adiabatic invariant: Even
though the energy changes, an initial surface of constant energy is mapped into a continuous family of
surfaces, each of which is also of constant energy. This observation allows efficient and direct dynamical
calculation of the entropy of classical Auids, exemplified here by a simple model of liquid water. The re-
sults depend substantially on the form of the "switching" function, suggesting possible improvements in
traditional thermodynamic switching processes. Application of a similar adiabaticity to Nose dynamics
allows dynamical computation of diA'erences in the Helmholtz free energy.

PACS numbers: 65.50.+m, 02.70.+d, 05.45.+b

Molecular dynamics (MD) and Monte Carlo (MC)
simulations are important techniques for the study of
classical and quantum many-body systems. These now

standard simulation methods yield statistical information
regarding properties that are explicit functions of the
phase-space coordinates of a system, such as potential
energy, temperature, and pressure. However, quoting
from a recent critically reviewed reprint collection, "By
contrast, it is not in general possible to obtain directly
from a simulation information on 'thermal' properties,
i.e., quantities that depend on the total phase-space
volume accessible to the system: examples include the
entropy, Helmholtz free energy and chemical poten-
tials. " What is implied here is that rather than simply
computing the time average of an explicit function of the
dynamical variables, the thermodynamic definitions re-
lating entropy and free-energy differences are mimicked
computationally. For example, in the thermodynamic
integration methods, changes in the Helmholtz free
energy A are determined from

AA = (dE)pe,
N 0

where the integration "path" connecting the two states
of interest must be thermodynamically reversible, and
the equilibrium average (d E)& must be sampled at a
large enough number of values of X to allow convergence
of the integral. Even the "slow growth" method, which
has more dynamical fiavor, is derived from the same
basis as thermodynamic integration.

We present in this Letter the first realistic application,
to molecular Auids, of an alternative method for a com-
putation of the entropy based on properties of the Ham-
iltonian dynamics lurking behind the usual MD method.
The method presented uses, as in thermodynamic in-
tegration, a reference system, and the Hamiltonian is al-
lowed to systematically evolve between the reference and
the actual system of interest. The philosophical basis
then changes abruptly: We note that if Hp represents
the Hamiltonian of our "reference" system, and H the
Hamiltonian of a system of interest, a single trajectory
of the time-dependent Hamiltonian,

H(t) =H, +C(T)(H Hp), (2)
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FIG. 1. The Liouville and Hertz invariants. The time-
dependent Liouville theorem implies that an initial phase-space
surface conserves phase-space volume 0, independent of
switching rate. If C(t) is adiabatic, then an energy shell of Ho
(at energy E„t I and phase volume 0) is mapped into precise-
ly that energy shell of H (at energy E;,„„i)which has the same.

phase volume Q. We can thus obtain EI;.„I(Q) from a single
trajectory of the time-dependent Hamiltonian, as a single tra-
jectory is sufficient to determine EI;„„[. Appropriate choice of
Ho implies knowledge of 0, and thus we have obtained the en-
ergy of a strongly interacting system as a function of its phase
volume O.

where C(t =0) =0 and C(t =T =the switching time)
=1, connects surfaces of constant phase volumes and,
further, if the time evolution is slow, constant entropies.
This allows direct computation of the entropy of the sys-
tem of interest by computation of a classical trajectory.

These remarks follow from the observation of Hertz in
1910 that the energy shell [whose phase volume ft gives
the semiclassical, or Thomas-Fermi, entropy as S=k
&&In(Q)] is an adiabatic invariant for a "slowly"-time-
varying Hamiltonian system. Thus, should the change
in C(t), above, be slow, a trajectory starting on an ener-

gy shell of Hp ends up on the unique energy shell of H
which, via Liouville's theorem, has the identical phase
volume. Computation of classical trajectories thus can
yield E(Q), 0 being the initial phase volume of an ener-

gy shell of Hp. 0 is analytically known if Hp is separ-
able, allowing calculation of E(f2) and thus E(S) [or
S(E) as E(S) is monotonic] for a strongly interacting
system. These relations are summarized in Fig. 1.

We show by direct numerical demonstration that use-

1990 The American Physical Society 3301



VOLUME 65, NUMBER 26 PHYSICAL REVIEW LETTERS 24 DECEMBER 1990

3pp

~27

2~24—
lg

15
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Total Switching Time (ps)
FIG. 2. Entropy of ST2 water mode1 as a function of tota1

switching time with density 1.0 g/cm', temperature of 27'C,
and an integration time step of 0.24 fs. Vertical bars indicate
the rms deviation of each calculation, based on five indepen-
dent trajectories for each switching time. The error bars thus
indicate the magnitude of statistical errors. Systematic error,
due to insufficient switching time, can be seen by the deviation
from the converged entropy value, and is independent of sta-
tistical error. For example, instantaneous switching shows a
very large systematic error (= 11 cal/mole) and much smaller
statistical error ( = 2 cal/mole).

ful results may be obtained both in the case that Ho is

separable, allowing calculation of absolute entropies of
strongly interacting systems, and in the case where H(t)
is strongly interacting for all 0 & t & T, allowing calcula-
tion of entropy and free-energy differences. For one de-

gree of freedom, a bounded trajectory defines the energy
shell, and the Hertz invariant is equivalent to conserva-
tion of action, the familiar Ehrenfest adiabatic invari-
ant. ' For two degrees of freedom, adiabaticity of the
energy shell had been recognized, independently of
Hertz, in the plasma physics community, and Ott and
co-workers" have determined, assuming ergodicity, the
asymptotic "goodness" of a "chaotic" invariant (which is

that of Hertz) as a function of switching time T, with

seemingly discouraging results.
In this Letter, we present evidence for the following:

(1) Contrary to the theoretical analysis of Ref. 11, the
method appears to be quite efficient. Converged results
are obtained in times very short compared to the ergodic
time scale, and thus ergodicity is a sufFicient, rather than

necessary, criterion for the utility of the method, which
can succeed even when HO is integrable, a perhaps sur-
prising result. (2) Preservation of dynamical adiabatici-
ty suggests the use of smooth switching functions, which
are indeed found to substantially improve convergence.
(3) Extension of the method to include Nose Hamiltoni-
an dynamics allows direct dynamical computation of
free-energy diA'erences.

As an illustration, we consider computation of the en-

tropy of liquid water. The ST2 and TIP4P models fa-
miliar from earlier MC and MD studies' ' were inves-

tigated to obtain absolute entropies and free energies.
The intermolecular interactions were truncated smoothly
based on the oxygen-oxygen separations. ' Five indepen-
dent equilibrium configurations of the same total energy
E„„„,were o.btained by traditional MD equilibration for
the fully interacting system with density 1.0 g/cm and
an average temperature of 27'C. The interaction was
then slowly switched off while continuing integration of
the classical MD trajectory. The final energy of each
classical trajectory is then an estimate of the energy of
an ideal gas with identical entropy to the water model.
E(S), and thus S(E), are known for the ideal gas. The
final energy of each trajectory thus yields an entropy, the
average of such entropies being S. E„.,t„(S), and thus

S„,. «„(E), has then been determined for the water mod-
el. Further, sampling and dynamical errors are deter-
mined by calculations of AS, , =(S —S )'/. Figure 2
shows the typical behavior of entropy as a function of to-
tal switching time. The excess entropy and excess
Helmholtz free energy, defined with respect to an ideal-
gas reference state with the same density and tempera-
ture, as well as the entropy calculated via the Hertz in-

variance, are shown in Table I and are in reasonable
agreement with previous works" "using the same mod-

els.
How do these results depend on the choice of switch-

ing function~ What does slow mean in practice? Analo-
gous semiclassical quantization by adiabatic switching of
invariant tori indicates that the convergence of the final

energy is proportional to T "+', where T is the total
switching time and n is the number of continuous deriva-
tives of switching function, C„(t), at t =0 and T. ' '

TABLE I. Calculation of entropy and Helmholtz free energy of water using the ST2 (Ref. 12) and TIP4P (Ref. 13) models.
Comparison is made with results of prior simulations using the same models. hS is excess entropy and hA is excess Helmholtz free

energy at 27 C with an integration time step of 0.24 fs and a total of 10000 switching steps. Our results are an average over five

classical trajectories.

Type of
model

Number of
molecules

S
(cal/mole K)

Present theoretical adiabatic switching calculations
A aS h.A

(kcal/mole) (cal/mole K) (kcal/mole)

Results of prior simulations
wS

(cal/mole K) (kcal/mole)

ST2
TIP4P
TIP4P

80
80

216

i6.7+ O. i

17.7+ 0.3
17.1+0. 1

—13.08 + 0.03
—13.27+ 0.09
—13.34 w 0.03

—14.1+0. 1

—13.1 + 0.3
—13.8+ 0. 1

—5.60+ 0.03
—5.79+ 0.09
—5.86+ 0.03

—17.1
"

—16.0
—13.6+ 1.1

'

—5.4 "'

—53
—5.4+ 0.3 '

"Reference 16 and has only 64 molecules.
Reference 17.

3302

'Reference 15.
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The dependence on n for the Hertz method is less strong,
but substantial. Six switching functions were defined
and studied, Eqs. (3)-(8), below. The functions are ex-
pressed in terms of the variable r=t/T, and defined in

the interval 0 ~ t ~ T:

Cp(t) =r,
Ci(t) = —r'(2r —3),
C2(t) =r —sin(2zr)/2z,

C3(t ) = —r (20r —70r +84r —35),

C4(t) =r (70r" —315r +540r 420r—+126), (7)

10.0

B.O

CI

@ 6.0
A

0
X

0 X
X

X
0

0~+

4.0

C (t) =exp ——exp
B

(8)
l' I,

—T

where 8 =(T /2ln2)(1 —T ' ln2) and 3 = —, T ln(2)
xexp(28/T). These functions are extended outside the
switching interval by defining C„(t)=0 for t ~0 and
C„(t)=1 for t ~ T. The C function has essential
singularities at t =0 and t =T, and has infinite contact.
The 216 TIP4P water model at 1.0 g/cm and 27'C was
used in order to compare the effect of these six switching
functions, with an integration time step of 0.24 fs. (The
C2 function was used in the calculations of Tables I and
II.) Defining an error function,

b(T) =In[exp[S(T)/k] —exp[S(~)/k]],

where S(T) is an entropy which is a function of total
switching time T and S(~) is the asymptotic equilibri-
um value of entropy, indicates (see Fig. 3) that the
switching functions with more than two continuous
derivatives have good convergence at T ~ 2.4 ps
(~ 10000 time steps), but the Cp and C~ functions give
substantially slower convergence. The C function is

I

Z (T q) exp Z "(T q).
eq

(12)

not useful for practical computation although presum-
ably its asymptotic convergence rate would be faster
than the others. The form of the switching functions
thus plays a crucial role in calculating entropy, as befits
a dynamical switching method. , Nonlinear methods
which carry the Hamiltonian, F. = (1 —r )Hp+ r H,
are often used. Such a switching function is thus
"smooth" near r =0, but approaches the asymptote,
~= 1, more sharply than in the linear case, and thus may
actually slow convergence of the final results.

The Hertz idea is useful within the context of other
ensembles. For example, Nose introduced a canonical
(constant temperature) ensemble MD method' with an
extended (Nose) Hamiltonian, shown here for a three-
dimensional system:

H=Hp(p/4, q)+Pqt, '/2Q+(f+ I)kT,qln@. (9)
In Eq. (9) Pq, is the conjugate momentum of @, Q is a
parameter of dimension energy x (time) ' and behaves as
a mass for the motion of 4, T,q is the externally set tem-
perature, and Hp is the Hamiltonian of the physical sys-
tem. Iff=3N, the microcanonical partition function for
the Nose Hamiltonian H may be written as

exp Z„(T,q), (10)3N+1 kT, q kT,q

where Z, is the partition function of the canonical en-
semble for the physical system Hp. The usual Hamil-
tonian MD simulation via Eq. (9) gives canonical aver-

ages for the physical subsystem.
Now consider an adiabatic change of Hp, of Eq. (9),

to some reference Hamiltonian, Hp'". The microcanoni-
cal partition function of the new Nose Hamiltonian may
similarly decompose as

]/2

Z""= 1 2@0 E' Z"" T3N+1 kT q kT

where Z,"'" is the canonical partition function of the
reference Hp".

Now, for an adiabatic transformation Z"'=Z, as the
total volume of phase space is invariant. Therefore, for
an adiabatic change,

r

8.0

6.0 7.0 8.0
tn(T)

FIG. 3. Error function (defined in the text) vs logarithm of
total switching time. Solid circles indicate C function;
crosses, Co, open circles, Cl., squares, C2; triangles, C3., and

plusses, C4. T is in units of fs. The (surprisingly) strong
dependence on the choice of switching function suggests a
rethinking of the optimal choice of the integration paths in

determination of the entropy and various free energies.

This relationship can be transformed to more familiar
form, hA =8 —8"'=E—E'. That is, the Helmholtz
free-energy diA'erence between two subsystems described
by Hp and Hp' at the same temperature T,q is equal to
the total energy diAerence of the Nose Hamiltonian un-
der the adiabatic transformation. Thus the integration
of a single microcanonical classical trajectory for the
time-dependent Nose Hamiltonian gives an estimate of a
free-energy change in the constant-temperature physical
system. This can be thought of as a dynamical deriva-
tion of the slow growth method, whose original deriva-
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TABLE II. DiA'erence in Helmholtz free energy per particle
(in Lennard-Jones unit) between Lennard-Jones fluid and an

inverse-twelve soft-sphere fluid on the isotherm kTlc=2 74.
Total of 8000 switching steps.

ivy't v iv

This work
h.A

Previous
Monte Carlo results '

0.500
0.800
0.835
0.850

108
108
108
108

—5.951 + 0.004
—11.713 + 0.005
—12.506 +' 0.005
—12.846+ 0.005

—5.95 + 0.01
—11.68 + 0.01
—12.49 ~ 0.015
—12.85 ~ 0.015

"Reference 20.

tion relied on thermodynamic perturbation theory. " As
a numerical test of this relation, we have investigated the
Helmholtz free-energy difference for a Lennard-Jones
fluid and an inverse-twelve soft-sphere fluid at the same
temperature. This was done at four different densities on
the supercritical isotherm kT/c=2. 74. Our calculations
are summarized in Table II. Free-energy differences cal-
culated by the Hertz method are in very good agreement
with previous work.

In summary, we have presented a dynamical method
for computation of the entropy and free energy of dense
atomic and molecular Auids and a new derivation of the
slow growth method. A dramatic change in convergence
as a function of switching function was empirically
demonstrated. Several theoretical questions now arise.
In an earlier analysis by Ott, " the requirement of point-
wise convergence of the energy shell required "switching
times" long compared to ergodicity time, and gave, even

then, very slow T ' rates of asymptotic convergence,
while rates of order T 't or faster are found here, for
times of only a few molecular librational periods. The
results here show that good "average" results (in the
sense that all that we require is that the mean of the final
switching energy surface is correct) are obtained in times
very small compared to the ergodicity time, and with
what is empirically determined to be a rather faster rate
of convergence than that of Ott and co-workers. '' In
fact, useful averaged results are obtained where ergodici-
ty fails. The dependence of the rate of convergence of
results on the choice of the switching function, as well as
the obtaining of converged results for dynamics run on a
subergodic time scale, suggests the need for further
theoretical analysis of the Hertz method and also of
traditional MD, and most certainly the slow growth, ap-
proaches to computation of the entropy and free energy,
as these may well contain implicit, but previously un-

recognized, dynamical components.
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