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High-wave-number modes are eliminated in a band characterized by its width parameter A. in k space.
The requisite conditional average is evaluated as an approximation in which coupling eA'ects are neglect-
ed to order X, for small X. A fixed point was found under renormalization-group transformation, which
corresponded to the Kolmogorov "—-',

" spectrum with spectral constant a =1.60.

PACS numbers: 47. 10.+g, 47.25.Cg

The work to be described here has its roots in the
method of iterative averaging, as reported previously. '
However, the present method will be presented as corn-
plete in itself. We shall begin by formulating and stating
the problem.

Consider the turbulent velocity field in wave-number
space u, (k, t), on the interval 0( k ( kp, with kp being
defined through the dissipation integral

t k0
2vp/c E(k)tjlc,2vp/c E(k)dlc=„

(u, (k, t)up(k', t')) =Q(k, t —t')D,p(k)/i(k+k'), (2)

where a,P =1, 2, or 3, and Q(k, t —t') is the spectral
density. The projector D,p(k) arises because of the in-

compressibility condition and is given by

D.p(k) =ci.p k.kpl kl— (3)

where e is the dissipation rate, vo is the kinematic viscos-
ity, and E(k) is the energy spectrum. This definition en-
sures that kp is of the same order of magnitude as the
Kolmogorov dissipation wave number.

As is usual, we denote a global averaging operation by
Dirac brackets, thus (). We restrict our attention to in-

compressible fluids subject to a chaotic velocity field with
zero mean, and consider only fields that are homogene-
ous, isotropic, and stationary in time. As a result, the
second-order moment takes the following form:

(7)

It then follows from the definition that this operator,
when acting on the low-k modes, has the following prop-
erties:

with the bandwidth parameter X satisfying the condition
0~k~ l.

In principle, the renormalization-group approach now
involves two stages: (A) Solve the Navier-Stokes equa-
tion (NSE) on kl (k (kp. Substitute that solution for
the mean effect of the high-k modes into the NSE on
0 ~ k ~ k l. This results in an increment to the viscosity:
vp vl = vp+ Svp. (B) Rescale the basic variables, so
that the NSE on 0(k(kl looks like the original
Navier-Stokes equation on 0 ~ k ~ ko.

This procedure is appealingly simple and has a clear
physical interpretation. But, as is well known, it has not
proved easy to put it into practice in the turbulence prob-
lem. The aim of this Letter is to introduce a rational
way of doing this, by an approximation in which the
bandwidth k plays the part of a small parameter. We
begin by introducing a conditional average which aver-
ages out the effect of high-k modes, while keeping the
u constant. That is, it is an average over the turbulent
ensemble in which realizations are chosen to hold u
constant. We represent it by the operator A[u+lu ]
and denote its eff'ect, on the first shell of wave numbers
to be eliminated, by ()p', thus,

A[u lu ]u, up
' ' '

u& =(u, up
' ' ' u, )p.

where 6,p is the Kronecker delta. The energy spectrum
is introduced by taking t =t' and setting Q(k, 0) =Q(k);
thus,

(u, (k))p=u, (k),
(u, (j)up (k —j))p=u, (j)up (k —j) . (9)

E(k) =4ttk Q(k) . (4)

u, (k) for 0(k(ki,
u lc

u,+ (k) for k
~

( k ( kp,

where k ] is defined by

k 1
=(I —x)kp,

(s)

In order to introduce the renormalization-group ap-
proach, we divide up the velocity field at k=k] in the
following way:

u.+ (k, t) =,+ (k, t)+A.+(k, t) . (10)

Here v+ is a field of the same general type as u+ and

We now wish to evaluate averages of this kind over the
high-k modes and express them in terms of global mean
quantities. T'he problem we face is that the u+ field is
not independent of the u field which we are holding
constant. The two fields are, of course, coupled together
through the nonlinear term in the Navier-Stokes equa-
tion. We tackle this difficulty by writing the high-k
modes in terms of a new field v+; thus
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has the same properties under global averaging; thus,

(v.'(k, t)) =0, (1 i)

(i3)

m~ l.

(v,+ (k, t)vp+ (k't, )) =(u,+ (k, t)up+ (k', t)) . (12)

However, the essential feature of v+ is that it is not cou-
pled to the u modes. Thus, through Eq. (10) we intro-
duce the function A+ to take account of such mode cou-
pling. Its properties under global averaging are as fol-
lows. From the condition of zero mean field, we have

(~.'(k, t)) =0,
while, from Eq. (12), we have

(~.'(k, t)~p'(k', t)) =0. (i4)
Note that this result also reflects the fact that global
averaging destroys the coupling between difl'erent wave

numbers for homogeneous fields; see Eq. (2).
With all these points in mind, we complete our

specification of the two new fields by stating their prop-
erties under conditional averaging as

3[u+Iu ]v+(k, t) =(v+(k, t))p=(v+(k, t)) =0
and

~iu'tu ]~'(k, t) =(a'(k, t)), =O(z ),

Now the equation of motion for incompressible fluid
flow is the Navier-Stokes equation. It may be written in

its spectral form as

+ vpk u (k, t)tl

t

=M,p„(k) d j up(j, t)u, (k j—, t)+f, (k, t), (17)

where

M,p, (k) = (2i) ' [kpD, „(k)+k„D,p(k)],

and D,p(k) is given by Eq. (3). We take the arbitrary
stirring forces f, (k, t) to satisfy the usual requirements
for a well-posed problem. That is, their direct effect is

only felt at very small values of the wave number. Apart
from that, we shall not specify them as, from our point of
view, their only importance lies in their maintaining the
stationarity of the velocity field against the viscous dissi-
pation of energy. '

Now let us form the evolution equations for the expli-
cit scale modes (u ) and the implicit scale modes (u+).
We use Eqs. (5), (8), and (9) to transform the NSE into
the key equation for the explicit scales:

fO

+vpk u, (k, t) — M,p, (k) d j up+(j, t)u„+(k —j,t) =
M, p( k)g d3j up (j,t)u„(k —j,t)+H, (k, t). (19)

The same procedure, and subtraction of (19) from (17), results in the equation for the implicit scales:

+vpk u,+(k, t) =2M, p, (k) d jup (j,t)u,+(k —j,t)4

+M,p„(k)„dj [up+ (j,t)u,+ (k j,t) —(—up+ (j,t)u„+ (k j,t))pl —H, (k, t—) . (20)

In both cases, H, (k, t) is a correction which may be expressed in terms of the conditionally averaged mode couplings

only, by using Eq. (10), along with Eqs. (15) and (16), to show that

H, (k, t) =2M,p, (k)„dj up (j,t)(h„+(k —j, t))p —Lp(h,+(k, t))p, (2i)

where L p
= [eclat + vpk ], thus indicating that the correction term is of order k

In order to complete the elimination of the high-k modes from Eq. (19), we need to obtain an explicit expression for

(up+(j, t)u,+(k —j,t))p. We obtain an evolution equation for this quantity from (20), and it is readily shown that this

takes the form

(up+ (j,t)u,+ (k —j, t))p = dt'exp[( —vpj —vptk —jt )(t —t')]Mph, (j)

f
x „d p[4uz (p, t')(u,+ (j —p, t') u,+ (k j,t'))p+2(—uz+ (p, t')u, + (j —

p, t') u,+ (k —j,t'))p]

—2((ub+ (p, t')u, + (j —p, t'))pu„+ (k j, t')&p ——2(u,+ (k —j, t')Hp(j, t'))p. (22)

It should be noted that this solution contains the triple
conditional moment (u+u+u+)p, and that we can solve

Eq. (20) for this in terms of the quadruple conditional
moment (u+u+u u+)p, and so on. Hence, the moment

closure problem is still with us, although it can be argued
that it has to some extent been tamed, as we have re-

t
stricted it to a narrow band of wave numbers located at
the end of the dissipation range.

We now make use of Eqs. (8)-(16) to evaluate condi-
tional moments of the u+ in terms of the unconditional
moments of the v+. At the same time, we solve (20)
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~i =~o+~~o, (23)

where the formula for the increment to viscosity is

-, L(k, j)g,.'(k-j )
(24)

with 0 ~ k & k(, k( ~ j, ~k
—

j~ & kp, and g„+ is merely
an extension of the spectral density as defined by (2) to

iteratively and show that the solution for (u+u+)p, to all

orders of unconditional moments, is linearly dependent
on u (k, t). With the procedures discussed above, we

can derive an expression for the increment 6'vo as the
sum of an infinite series in the unconditional moments of
the v+ field.

Further details of these procedures will be given in a
later paper, but, for the present, the essential point is

that this elimination of the first shell of modes (1 —l)
xkp & k & kp is a quite general, rigorous method. How-

ever, in order to carry out the second step which com-
pletes one iteration of the renormalization group, we

must make three approximations. As two of these are
fixed in form by what are basically practical considera-
tions, we shall deal with these first in order to isolate the
essential approximation which lies at the heart of the
present method.

First, we truncate the unconditional moment expan-
sion in the v+ field at the lowest nontrivial order. This
means that we consider only terms which are second or-
der in the interaction strength (i.e., of superficial order
M').

Second, the time integrations on the right-hand side of
Eq. (22) are evaluated on the basis that the u are slow-

ly varying on the time scales characteristic of the u+ (or,
more pertinently, the v+ ). This is an example of a Mar-
kovian approximation.

Then, with all these points in mind, Eqs. (19)-(22)
yield for the viscosity acting on the explicit scales:

the v+ field. The coefficient L(k, j) is given by

(28)

L(k, j) = —2M~((, (k)Mp~(;(j )D(;,(~k —j~)

[p(k +j ) kj (1+2p )](1—p )kj
k +j —2kjp

where p is the cosine of the angle between the vectors k
and j.

Now let us consider our principal approximation. In
order to make a specific calculation, we shall assume that
the coupling between distinct Fourier modes is local in
wave number. That is, we shall assume that A. is large
enough for u(kp) to be independent of u(k~), and at the
same time that X is small enough for us to represent the
Fourier components in the band by means of a first-order
Taylor series. In this way, we impose both upper and
lower bounds on A, , when we make the identification
t'+ (k,,t) =u+ (kp, t)+ (k kp) ' Vu + (k, t) ~t (; +O(k ) .

(26)
Note that we conclude that terms of order X have been
neglected because the maximum value of ~k

—
kp~ is )I, ,

and hence 5,+ and H, are also both O(k ).
We extend the procedure to further wave-number

shells as follows: (a) Set u, (k, t) =u, (k, t) in Eq. (19),
so that we now have a new NSE with eff'ective viscosity
v((k) for Fourier modes on the interval 0 & k & k(. (b)
Make the decomposition of (5), but this time at k =k2,
such that u,+ (k, t) is now defined in the band k2 ~ k
~ k~. (c) Repeat the procedures used to eliminate the
first shell of modes in order now to eliminate modes in

the band k2 ~ k ~ k ~.

In this way, we can progressively eliminate the eA'ect

of high wave numbers in a series of bands k„~ ( & k & k„,
where

k„=(1 —k) "kp, 0 ~ A. s 1, (27)
with, by induction, the recursion relation for the eA'ective

viscosity given by

v„~ ((k) =v„(k)+Bv„(k),
where the increment of order n takes the form

L(k, j)jg(l) ((-g„+(l —k„)tlg(l)/Bl ~(-(,„+O(k')I
Sv„(k)=, d'j

k 4 v„j'+ v„lk —jl'
(29)

Also, we may form an energy equation for the explicit
scales, hence obtaining the renormalized dissipation rela-
tion, viz. ,

from Eqs. (28) and (29) that the eff'ective viscosity may
be written as

r k„
2v„(k)E(k)dk =e, (30)

v(k„k') =a' e'( k„v„(k'), (32)

k„+) =hk„, (31)

where, for compactness, we define h = (1 —1), it follows

which may be compared with the unrenormalized form
given in Eq. (1).

If we now assume that the energy spectrum in the
band is given by a power law and make the scaling trans-
formation

where a is the constant of proportionality in the assumed
spectrum. Now the recursion relation becomes

v„i((k') =h 'v„(hk')+h 'Bv„(k') (33)

with

(k') d ' '~ g (34)
4(tk '

v„(hj')j ' + v„(hl') I '~

for the wave-number bands 0 ~ k' ~ 1, 1 ~ j', I' ~ h
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g 3.2—

~ 2.8-
C
~ 2.4-O
V)
C
O 2.0-
U

~ 1.6-
0
0~ 1.2-

~ 0.8-

where I'= ik' —j'i, and

g& I I I/3 ~ ~

p l4/3(1& p
—

I ) + (35)

( denotes higher-order terms). Iteration of Eqs.
(33) and (34) reaches a fixed point and details of this
calculation will be given in a further communication,
but, for the present we note that once a fixed point is

found we can calculate the Kolrnogorov constant by solv-

ing Eqs. (30) and (32) simultaneously. In Fig. 1 we plot
the calculated values of a against the bandwidth param-
eter X. One merit of taking a as a test is that it does
have known experimental values, albeit scattered in the
range 1.2 & a & 2.2. From the figure, it can be seen that
our calculated value of the Kolmogorov spectral constant
is a 1.60, in good agreement with experiment, for the

0 4—0
0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Bandwidth parameter, h.

FIG. 1. Dependence of the calculated value of the Kolmo-
gorov spectral constant on the choice of width of band in which
modes were eliminated.

range of k for which the theory is valid. At large values
of k, one may observe the breakdown of the first-order
Taylor series approximation, while at small values, one
sees the effects of mode coupling, which would invalidate
the assumption that u(ko) is independent of u(k~).

Before concluding, we make two points. First, an ex-
plicit operator with the properties of the conditional
average set out in Eqs. (8), (9), and (15) has been ob-
tained in approximate form as a variation between dif-
ferent realizations. Second, the form of the increment to
the effective viscosity, as given by (24), is identical to the
expression for the total effective viscosity which is ob-
tained when time dependences in the direct interaction
approximation are represented by exponential decays.

We conclude by pointing out that the main effect of
the present work is to recast the problem as: How does
one make a physically reasonable and mathematically
tractable choice which expresses v+ in terms of u+?
Evidently Eq. (26) is a natural choice, but the effect of
making other choices will be explored in further work.
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