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Natural Inflation with Pseudo Nambu-Goldstone Bosons
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We show that a pseudo Nambu-Goldstone boson, with a potential of the form V(P) =A [1

cos(p/f)l, can naturally give rise to an epoch of inflation in the early Universe. Successful inflation

can be achieved if f-mp~ and A-moUT. Such mass scales arise in particle-physics models with a gauge
group that becomes strongly interacting at a scale -A, e.g. , as can happen in superstring theories. The
density fluctuation spectrum is non-scale-invariant, with extra power on large length scales.

PACS numbers: 98.80.Cq

The inflationary-universe model was proposed ' to
solve several cosmological puzzles, notably the horizon,
flatness, and monopole problems. During the inflation-

ary epoch, the energy density of the Universe is dominat-
ed by vacuum energy, p=p„,.„andthe scale factor of the
Universe expands exponentially: R(t) tx:e ', where the
Hubble parameter H =R/R = (8nGp„,J3) '/' during
inflation. If the interval of exponential expansion
satisfies At +60H ', a small causally connected region
of the Universe grows sufficiently to explain the observed
homogeneity and isotropy of the Universe, to dilute any
overdensity of magnetic monopoles, and to flatten the
spatial hypersurfaces, 0 —=8trGp/3H l.

To satisfy a combination of constraints on inflationary
models, in particular, sufficient inflation and micro-
wave-background anisotropy limits on density fluctua-
tions, the potential of the field responsible for inflation
(the inflaton) must be very flat. For a general class of
inflation models involving a single slowly rolling field (in-
cluding new, chaotic, and double-field inflation ), the
ratio of the height to the (width) of the potential must
satisfy

where AV is the change in the potential V(P) and Atli is

the change in the field p during the slowly rolling portion
of the inflationary epoch. [For extended inflation, g
& 10 ' (Ref. 8).] Thus, the inflaton must be extremely
weakly self-coupled, with eff'ective quartic self-coupling
constant A,~(6(g) (Ref. 7) (in realistic models,( 10

—12)

While a number of workable inflation models [satisfy-
ing Eq. (1)] have been proposed, none of them is com-
pelling from a particle-physics standpoint. In some
cases, the tiny coupling X~ is simply postulated ad hoc at
tree level, and then must be fine tuned to remain small in

the presence of radiative corrections. But this merely re-
places a cosmological naturalness problem with unnatur-
al particle physics. The situation is improved in models
where the smallness of k~ is protected by a symmetry,

V(y) =A'[1+ cos(/Vy/f)] . (2)

We will take the positive sign in Eq. (2) (this choice has
no eff'ect on our results) and, unless otherwise noted, as-
sume N=1, so the potential, of height 2A, has a unique
minimum at p =nf (we assume the periodicity of P is

2trf). We show below that, for appropriately chosen
values of the mass scales, namely, f-mp~ and A-mGUT
—10' GeV, the PNGB field p can drive inflation. [This

e.g. , supersymmetry. In these cases, ' k, may arise from
a small ratio of mass scales; however, the required mass

hierarchy, while stable, is itself unexplained. It would be
preferable if such a hierarchy, and thus inflation itself,
arose dynamically in particle-physics models.

Nambu-Goldstone bosons are ubiquitous in particle-
physics models: They arise whenever a global symmetry
is spontaneously broken. If there is additional explicit
symmetry breaking, these particles become pseudo
Nambu-Goldstone bosons (PNGBs). In models with a
large global-symmetry-breaking scale f, PNGBs are very

weakly interacting, since their couplings are suppressed

by inverse powers of f. For example, in "invisible" axion
models'" with Peccei-Quinn scale fpQ-10' GeV, the
axion self-coupling is k, —(AQcD/fpQ) 10 . [This
simply reflects the hierarchy between the QCD and
grand-unified-theory (GUT) scales, which arises from
the slow logarithmic running of aQCD. ] Because of the
nonlinearly realized global symmetry, the potential for
PNGBs is exactly flat at tree level. The symmetry may
be explicitly broken by loop corrections, as in schizon'
and axion" models. In the case of axions, for example,
the PNGB mass arises from nonperturbative gauge-field
configurations (instantons) through the chiral anomaly.
When the associated gauge group becomes strong at a
mass scale A, instanton efl'ects give rise to a periodic po-
tential of height -A for the PNGB field. ' Since the
nonlinearly realized symmetry is restored as A 0, the
flatness of the PNGB potential is natural in the sense of
't Hooft. '

The resulting PNGB potential is generally of the form
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is consistent with Eq. (1), since g-(A/f) —10
These mass scales can arise naturally in particle-physics
models. For example, in the hidden sector of superstring
theories, if a non-Abelian group remains unbroken, the
running gauge coupling can become strong at the GUT
scale;' then the role of the PNGB inflaton might be
played, e.g. , by the model-independent axion. '

For temperatures T &f, the global symmetry is spon-
taneously broken, and the field p describes the phase de-
gree of freedom around the bottom of a "Mexican hat. "
Since p thermally decouples at a temperature T-f imp~
-f, we assume it is initially laid down at random be-
tween 0 and 2nf in difTerent causally connected regions.
Within each Hubble volume, the evolution of the field is
described by

j+3Hj+rj+ V'(y) =0,
where I is the decay width of the inflaton. In the tem-
perature range A (T (f, the potential V(p) is dynami-
cally irrelevant, because the forcing term V'(p) is negli-
gible compared to the Hubble damping term. (In addi-
tion, for axion models, A 0 as T/A ~ due to the
high-temperature suppression of instantons. ' ) Thus, in

this temperature range, aside from the smoothing of spa-
tial gradients in p, the field does not evolve. Finally, at
T A, in regions of the Universe with p initially near the
top of the potential, the field starts to roll slowly down
the hill toward the minimum. In those regions, the ener-

gy density of the Universe is quickly dominated by the
vacuum contribution [V(p) =2A & p„d-T], and the
Universe expands exponentially. Since the initial condi-
tions for p are random, our model is closest in spirit to
chaotic inflation. Note that PNGBs may also provide a
flat potential for double-field inflation.

To successfully solve the cosmological puzzles of the
standard cosmology, an inflationary model must satisfy a
variety of constraints.

(I) Slow rolling regi-me The field i.s—said to be slow-

ly rolling (SR) when its motion is overdamped, i.e.,

p« 3H& (N.B., I «H), and two conditions are met:
i/2

IV I
(9H2 2lcos(e/f)I ( ~48nf

1+cos(p/f ) m p~

(4)

and

V (4)mpl ( . si (pn/f ) & J48nf
48n, i.e. ,

V(p)
' ' ' I+cos(glf) mpi

(5)

From Eqs. (4) and (5) the existence of a broad SR re-

gime requires f~ mp~/J48n (required below for other
reasons). The SR regime ends when p reaches a value

P2, at which one of the inequalities (4) or (5) is violated.
For example, for f=m p~, p2/f =2.98 (near the minimum
of the potential), while for f=m p~/424n, P2/f =1.9.
Clearly, as f grows, p2/f approaches n. (Here and
below, we assume inflation begins at a field value 0 & p~/

16nf ' sin(ifi2/2f )
(6)

Using Eqs. (4) and (5) to determine pp as a function of
f, the constraint (6) determines the maximum value
(pP"") of p~ consistent with sufficient inflation. The
fraction of the Universe with p~ C [0,&~

"i will inflate
sufficiently. If we assume that p~ is randomly distributed
between 0 and nf from one horizon volume to another,
the probability of being in such a region is pt '"/nf. For
example, for f 3mp~, mp~, mp]/2, and mp~/J24n, the
probability is 0.7, 0.2, 3x10, and 3x10 '. The frac-
tion of the Universe that inflates sufficiently drops pre-
cipitously with decreasing f, but is large for f near mp~.

(3) Density fluctuations. —Inflationary models gen-
erate density fluctuations' with amplitude at horizon
crossing b'p/p=0. 1H /p, where the right-hand side is
evaluated when the fluctuation crossed outside the hor-
izon during inflation. Fluctuations on observable scales
are produced 60-50 e-foldings before the end of
inflation. The largest-amplitude perturbations are pro-
duced 60 e-foldings before the end of inflation,

ap 0 3A'f 8n [I+cos(eP"/f)i"'
p mp') 3 sin(yP'"/f)

Constraints on the anisotropy of the microwave back-
ground require 8p/p ~ 5X10, i.e. ,

2X10' GeV for f=mp~,
is3 x 10 GeV for f=m p~/2.

(8a)
(8b)

Thus, to generate the fluctuations responsible for large-
scale structure, A should be comparable to the GUT
scale, and the inflaton mass m~=A /f-10"-(2X10' )
GeV.

In this model, the fluctuations deviate from a scale-
invariant spectrum. For f& 3mp~/4, the amplitude

m 2/48~f 2

grows with mass scale M as Bp/p-M " . Thus,
the primordial power spectrum (at fixed time) is a power
law, ISiI —k", with spectral index n= 1

—mp~/8nf .
The extra power on large scales (compared to the scale-
invariant n =1 spectrum) may have important implica-
tions for large-scale structure. '

In new inflation models, the density perturbation con-
straint usually requires a very large number of e-foldings

f & n", since the potential is symmetric about its
minimum, we can just as easily consider the case
n & p ~/f & 2n. )

(2) Sufhcient inflation .—We demand that the scale
factor of the Universe inflates by at least 60 e-foldings
during the SR regime,

(yl $2,f) ln(+2!+ I )

8n "2 V(y) d
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of the scale factor. Here, many regions of the Universe
will inflate less than 60 e-foldings and generate accept-
able density fluctuations. Thus, this model might be
easily embedded in double-inflation scenarios that also
seek to produce extra power on large scales.

(4) Quantum fiuctuations T.
—he semiclassical treat-

ment of the scalar field requires the initial value of p to
exceed its quantum fluctuations, i.e., pi) A&=H/2tt.
For example, this requires that pi/f ) 10 for f=mph.
Since pP'"»H/2n over the parameter range of interest,
this constraint does not place significant restrictions on
the model.

(5) Reheating At.—the end of the SR regime, the
field p oscillates about the minimum of the potential, and
gives rise to particle and entropy production. The decay
of p into fermions and gauge bosons reheats the Universe
to a temperature

TRH
45

4z gg

' 1/4

min[[H($2)mpl], (I mph) ], (9)

where g~ is the number of relativistic degrees of free-
dom. On dimensional grounds, the decay rate is
I =g m~/f =g2A6/f, where g is an eff'ective coupling
constant. [For example, in the original axion model, 'z

ga:aEM for two-photon decay, and g ec(m~/m, ) for
decays to light ferrnions y.] For f=mph and g+ =10,
we find TaH = min [6x 10' GeV, 10 g GeV]. Since we

generally expect g(1, the reheat temperature will be
TaH(10 GeV, too low for conventional GUT baryo-
genesis, but high enough if baryogenesis takes place at
the electroweak scale. Alternatively, the baryon asyrn-
metry can be produced directly during reheating through
baryon-violating decays of p or its decay products. The
resulting baryon-to-entropy ratio is ntt/s =eTaH/m~
-egA/f-10 eg, where e is the CP-violating parame-
ter; provided t.'g) 10, the observed asymmetry can be
generated.

(6) Spatial gradients and topological defects—Above, we assume that the Universe is vacuum dom-
inated [p= V(p)] when p begins to roll down the hill.
Otherwise, the onset of inflation could be delayed or even
prevented altogether. Several sources of energy density
could be problematic: spatial p gradients, global cosmic
strings, and domain walls. For a spatial fluctuation with
amplitude bp and wavelength L, the gradient energy
density is (Vp) =(bp/L) . Requiring this to be less
than the potential V(p) at the onset of inflation leads to
the constraint LH) 3(8&/f)f/mph, i.e., large-amplitude
gradients (8p-f ) must have wavelengths longer than
the Hubble length, L~0 ', at T-A. ' Gradients on
subhorizon scales (L (H ') are expected to be
smoothed out by the beginning of inflation: Since the
potential is inoperative for T A, these gradients are
damped (redshifted away) by the Hubble expansion.
Thus, the gradient energy density at T—A is at most
comparable to the potential and quickly becomes sub-

dominant; the net effect is to delay only slightly the
onset of inflation. This conclusion follows as long as
there also exists a long-wavelength mode (L»H ')
with amplitude 6p-'f; in this case, there will be regions
with pi (pl '" which inflate. Since p is initially Pois-
son distributed, we expect roughly equal power on all
scales at T-f, i.e., Bpt -f independent of L (at least
for L )mph '); consequently, gradients should be innocu-
ous, and the probability for inflation will be given by the
estimates in Sec. (2) above.

To be conservative, however, we can assume that we
must be in a region of the Universe that is homogeneous
over at least —1 horizon volume at the onset of inflation.
We model the Universe as a tetrahedral lattice with ver-
tices separated by a Hubble length and assume the field
is uncorrelated from one vertex point to another. Re-
quiring each point of a tetrahedron to have 0(pi( pl

'" (or the equivalent at other maxima of the poten-
tial), we find that the fraction of the Universe that is

homogeneous and inflates is P =2N(&P'"/2nfN), where
N is the number of distinct minima of the potential. For
f=mpl, pP'"/f =0.6 and P=2x10 N; for f =mph/

2, Pl '"=10 and P=10 ''N . From this argu-
ment, the scale f must be very near mph to avoid fine tun-

ing the initial conditions. On the other hand, if the pre-
vious paragraph is correct, the constraints from gradients
are not so severe; ultimately, the issue should be settled

by numerical simulations.
Initial gradients in p may also lead to global cosmic

strings, which form in the symmetry breaking at T-f,
and to domain ~alls, which may form at T-A. The
energy density in strings, which correspond to con-
figurations in which p/f winds around 2tr and have di-
mensionless mass per unit length Gp —(f/mph) —1, is

comparable to the gradient density estimated above, as-
suming of order one string per horizon. The initial ener-

gy density in domain walls, pnw=aH, where cr=fA' is

the wall surface energy per unit area, will also be of the
same order of magnitude. Since their energy densities
redshift away, topological defects do not prevent the
Universe from inflating, but, like gradients, delay briefly
the onset of inflation. Once inflation takes place, our ob-
servable Universe lies deep inside a single domain with

p=nf, so both strings and domain walls are inflated
away.

In conclusion, a pseudo Nambu-Goldstone boson, with
a potential [Eq. (2)] that arises naturally from particle-
physics models, can lead to successful inflation if the glo-
bal symmetry-breaking scale f=mpl and A=mo&T.
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